

DRAM Package Electrical Specifications

				66/2133/ /2666	29	33	32	200		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Max	Unit	Notes
Input/out-	Zpkg	Z _{IO}	45	85	48	85	48	85	ohm	1, 2, 4
put	Package delay	Td _{IO}	14	42	14	40	14	40	ps	1, 3, 4
	Lpkg	L _{IO}	-	3.3	_	3.3	-	3.3	nH	10
	Cpkg	C _{IO}	-	0.78	_	0.78	-	0.78	pF	11
DQS_t,	Zpkg	Z _{IO DQS}	45	85	48	85	48	85	ohm	1, 2
DQS_c	Package delay	Td _{IO DQS}	14	42	14	40	14	40	ps	1, 3
	Delta Zpkg	DZ _{IO DQS}	-	10	_	10	_	10	ohm	1, 2, 6
	Delta delay	DTd _{IO DQS}	-	5	_	5	_	5	ps	1, 3, 6
	Lpkg	L _{IO DQS}	-	3.3	-	3.3	_	3.3	nH	10
	Cpkg	C _{IO DQS}	-	0.78	-	0.78	-	0.78	pF	11
Input CTRL	Zpkg	Z _{I CTRL}	50	90	50	90	50	90	ohm	1, 2, 8
pins	Package delay	Td _{I CTRL}	14	42	14	40	14	40	ps	1, 3, 8
	Lpkg	L _{I CTRL}	-	3.4	-	3.4	-	3.4	nH	10
	Cpkg	C _{I CTRL}	-	0.7	- 0.7		-	0.7	pF	11
Input CMD	Zpkg	Z _{I ADD CMD}	50	90	50	90	50	90	ohm	1, 2, 7
ADD pins	Package delay	Td _{I ADD CMD}	14	45	14	40	14	40	ps	1, 3, 7
	Lpkg	L _{I ADD CMD}	-	3.6	_	3.6	-	3.6	nH	10
	Cpkg	C _{I ADD CMD}	-	0.74	-	- 0.74		- 0.74		11
CK_t, CK_c	Zpkg	Z _{CK}	50	90	50	90	50	90	ohm	1, 2
	Package delay	Td _{CK}	14	42	14	42	14	42	ps	1, 3
	Delta Zpkg	DZ _{DCK}	-	10	-	10	-	10	ohm	1, 2, 5
	Delta delay	DTd _{DCK}	-	5	_	5	-	5	ps	1, 3, 5
	Lpkg	L _{I CLK}	-	3.4	_	3.4	-	3.4	nH	10
	Cpkg	C _{I CLK}	-	0.7	_	0.7	-	0.7	pF	11
ZQ Zpkg	1	Z _{O ZQ}	-	100	_	100	-	100	ohm	1, 2
ZQ delay		Td _{O ZQ}	20	90	20	90	20	90	ps	1, 3
ALERT Zpkg	ALERT Zpkg		40	100	40	100	40	100	ohm	1, 2
ALERT delay	,	Td _{O ALERT}	20	55	20	55	20	55	ps	1, 3

Table 133: DRAM Package Electrical Specifications for x4 and x8 Devices

Notes: 1. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The package parasitic (L and C) are validated using package only samples. The capacitance is measured with V_{DD}, V_{DDQ},

V_{SS}, and V_{SSQ} shorted with all other signal pins floating. The inductance is measured with V_{DD}, V_{DDQ}, V_{SS}, and V_{SSQ} shorted and all other signal pins shorted at the die, not pin, side.

- 2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg).
- Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg).
- 4. $Z_{\rm IO}$ and $Td_{\rm IO}$ apply to DQ, DM, TDQS_t and TDQS_c.
- 5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).
- 6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td).
- 7. $Z_{I ADD CMD}$ and $Td_{I ADD CMD}$ apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, WE_n, ACT_n, and PAR.
- 8. Z_{I CTRL} and Td_{I CTRL} apply to ODT, CS_n, and CKE.
- 9. Package implementations will meet specification if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown.
- 10. It is assumed that Lpkg can be approximated as Lpkg = $Z_O \times Td$.
- 11. It is assumed that Cpkg can be approximated as Cpkg = Td/Z_0 .

Table 134: DRAM Package Electrical Specifications for x16 Devices

				66/2133/ /2666	29	33	32	:00			
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Unit	Notes	
Input/out-	Zpkg	Z _{IO}	45	85	45	85	45	85	ohm	1, 2, 4	
put	Package delay	Td _{IO}	14	45	14	45	14	45	ps	1, 3, 4	
	Lpkg	L _{IO}	-	3.4	-	3.4	-	3.4	nH	11	
	Cpkg	C _{IO}	-	0.82	-	0.82	-	0.82	pF	11	
LDQS_t/LDQ	Zpkg	Z _{IO DQS}	45	85	45	85	45	85	ohm	1, 2	
S_c/UDQS_t/ UDQS_c	Package delay	Td _{IO DQS}	14	45	14	45	14	45	ps	1, 3	
	Lpkg	L _{IO DQS}	-	3.4	-	3.4	-	3.4	nH	11	
	Cpkg	C _{IO DQS}	-	0.82	-	0.82	-	0.82	pF	11	
LDQS_t/LDQ	Delta Zpkg	DZ _{IO DQS}	-	10.5	-	10.5	-	10.5	ohm	1, 2, 6	
S_c, UDQS_t/UD QS_c,	Delta delay	DTd _{IO DQS}	-	5	_	5	_	5	ps	1, 3, 6	
Input CTRL	Zpkg	Z _{I CTRL}	50	90	50	90	50	90	ohm	1, 2, 8	
pins	Package delay	Td _{I CTRL}	14	42	14	42	14	42	ps	1, 3, 8	
	Lpkg	L _{I CTRL}	-	3.4	_	3.4	-	3.4	nH	11	
	Cpkg	C _{I CTRL}	-	0.7	-	0.7	-	0.7	pF	11	
Input CMD	Zpkg	Z _{I ADD CMD}	50	90	50	90	50	90	ohm	1, 2, 7	
ADD pins	Package delay	Td _{I ADD CMD}	14	52	14	52	14	52	ps	1, 3, 7	
	Lpkg	L _{I ADD CMD}	-	3.9	-	3.9	-	3.9	nH	11	
	Cpkg	C _{I ADD CMD}	-	0.86	Ι	0.86	_	0.86	pF	11	

8Gb: x4, x8, x16 DDR4 SDRAM DRAM Package Electrical Specifications

				66/2133/ /2666	29	33	32	00		Notes
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Unit	
CK_t, CK_c	Zpkg	Z _{CK}	50	90	50	90	50	90	ohm	1, 2
	Package delay	Td _{CK}	14	42	14	42	14	42	ps	1, 3
	Delta Zpkg	DZ _{DCK}	-	10.5	_	10.5	_	10.5	ohm	1, 2, 5
	Delta delay	DTd _{DCK}	-	5	_	5	-	5	ps	1, 3, 5
Input CLK	Lpkg	L _{I CLK}	-	3.4	_	3.4	_	3.4	nH	11
	Cpkg	C _{I CLK}	-	0.7	_	0.7	_	0.7	pF	11
ZQ Zpkg		Z _{O ZQ}	-	100	_	100	_	100	ohm	1, 2
ZQ delay		Td _{O ZQ}	20	90	20	90	20	90	ps	1, 3
ALERT Zpkg		Z _{O ALERT}	40	100	40	100	40	100	ohm	1, 2
ALERT delay	,	Td _{O ALERT}	20	55	20	55	20	55	ps	1, 3

Table 134: DRAM Package Electrical Specifications for x16 Devices (Continued)

Notes: 1. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The package parasitic (L and C) are validated using package only samples. The capacitance is measured with V_{DD}, V_{DDQ}, V_{SS}, and V_{SSQ} shorted with all other signal pins floating. The inductance is measured with V_{DD}, V_{DDQ}, V_{SS}, and V_{SSQ} shorted and all other signal pins shorted at the die, not pin, side.

- 2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg).
- 3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg).
- 4. $Z_{\rm IO}$ and $Td_{\rm IO}$ apply to DQ, DM, TDQS_t and TDQS_c.
- 5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).
- 6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td).
- 7. Z_{I ADD CMD} and Td_{I ADD CMD} apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, WE_n, ACT_n, and PAR.
- 8. $Z_{I \ CTRL}$ and $Td_{I \ CTRL}$ apply to ODT, CS_n, and CKE.
- 9. Package implementations will meet specification if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown.
- 10. It is assumed that Lpkg can be approximated as Lpkg = $Z_O \times Td$.
- 11. It is assumed that Cpkg can be approximated as $Cpkg = Td/Z_O$.

8Gb: x4, x8, x16 DDR4 SDRAM DRAM Package Electrical Specifications

Table 135: Pad Input/Output Capacitance

			-1600, 2133		-2400, 66	DDR4	-2933	DDR4	-3200		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Max	Min Max		Unit	Notes
Input/output capacitance: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c	C _{IO}	0.55	1.4	0.55	1.15	0.55	1.00	0.55	1.00	pF	1, 2, 3
Input capacitance: CK_t and CK_c	С _{СК}	0.2	0.8	0.2	0.7	0.2	0.7	0.15	0.7	pF	2, 3
Input capacitance delta: CK_t and CK_c	C _{DCK}	-	0.05	-	0.05	-	0.05	-	0.05	pF	2, 3, 6
Input/output capacitance delta: DQS_t and DQS_c	C _{DDQS}	-	0.05	-	0.05	-	0.05	-	0.05	pF	2, 3, 5
Input capacitance: CTRL, ADD, CMD input-only pins	CI	0.2	0.8	0.2	0.7	0.2	0.6	0.15	0.55	pF	2, 3, 4
Input capacitance delta: All CTRL input-only pins	C _{DI_CTRL}	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	pF	2, 3, 8, 9
Input capacitance delta: All ADD/CMD input-only pins	C _{DI_AD-} D_CMD	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	pF	1, 2, 10, 11
Input/output capacitance delta: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c	C _{DIO}	-0.1	0.1	-0.1	0.1	-0.1	0.1	-0.1	0.1	pF	1, 2, 3, 4
Input/output capacitance: ALERT pin	C _{ALERT}	0.5	1.5	0.5	1.5	0.5	1.5	0.5	1.5	pF	2, 3
Input/output capacitance: ZQ pin	C _{ZQ}	_	2.3	-	2.3	-	2.3	_	2.3	pF	2, 3, 12
Input/output capacitance: TEN pin	C _{TEN}	0.2	2.3	0.2	2.3	0.2	2.3	0.15	2.3	pF	2, 3, 13

Notes: 1. Although the DM, TDQS_t, and TDQS_c pins have different functions, the loading matches DQ and DQS.

- 2. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The capacitance, if and when, is measured according to the JEP147 specification, "Procedure for Measuring Input Capacitance Using a Vector Network Analyzer (VNA)," with V_{DD}, V_{DDQ}, V_{SS}, and V_{SSQ} applied and all other pins floating (except the pin under test, CKE, RESET_n and ODT, as necessary). V_{DD} = V_{DDQ} = 1.2V, V_{BIAS} = V_{DD}/2 and on-die termination off. Measured data is rounded using industry standard half-rounded up methodology to the nearest hundredth of the MSB.
- 3. This parameter applies to monolithic die, obtained by de-embedding the package L and C parasitics.
- 4. $C_{DIO} = C_{IO}(DQ, DM) 0.5 \times (C_{IO}(DQS_t) + C_{IO}(DQS_c)).$
- 5. Absolute value of C_{IO} (DQS_t), C_{IO} (DQS_c)
- 6. Absolute value of CCK_t, CCK_c
- 7. Cl applies to ODT, CS_n, CKE, A[17:0], BA[1:0], BG[1:0], RAS_n, CAS_n, ACT_n, PAR and WE_n.
- 8. C_{DI_CTRL} applies to ODT, CS_n, and CKE.
- 9. $C_{DI \ CTRL} = C_I(CTRL) 0.5 \times (C_I(CLK_t) + C_I(CLK_c)).$
- 10. C_{DI ADD CMD} applies to A[17:0], BA1:0], BG[1:0], RAS_n, CAS_n, ACT_n, PAR and WE_n.
- 11. $C_{DI ADD CMD} = C_I(ADD_CMD) 0.5 \times (C_I(CLK_t) + C_I(CLK_c)).$
- 12. Maximum external load capacitance on ZQ pin: 5pF.
- 13. Only applicable if TEN pin does not have an internal pull-up.

Thermal Characteristics

Table 136: Thermal Characteristics

Paramete	r/Condition		Value	Units	Symbol	Notes
	case temperatu	re:	0 to +85	°C	Т _С	1, 2, 3
Commercia			0 to +95	°C	Т _С	1, 2, 3, 4
	case temperatu	re:	-40 to +85	°C	T _C	1, 2, 3
Industrial			-40 to +95	°C	T _C	1, 2, 3, 4
	case temperatu	re:	-40 to +85	°C	T _C	1, 2, 3
Automotive	2		-40 to +105	°C	T _C	1, 2, 3, 4
	78-ball	Junction-to-case (TOP)	3.1	°C/W	OIC	5
	"PM"	Junction-to-board	10.6	°C/W	ΘJB	
REV A	96-ball	Junction-to-case (TOP)	3.0	°C/W	OIC	5
	"HA"	Junction-to-board	9.9	°C/W	ΘJB	
	78-ball	Junction-to-case (TOP)	3.5	°C/W	OIC	5
	"WE"	Junction-to-board	21	°C/W	ΘJB	
REV B		Junction-to-case (TOP)	4.1	°C/W	OIC	5
	96-ball "JY"	Junction-to-board	16.2	°C/W	ΘJB	
	78-ball	Junction-to-case (TOP)	3.2	°C/W	OIC	5
	"WE"	Junction-to-board	20.2	°C/W	ΘJB	
REV D		Junction-to-case (TOP)	TBD	°C/W	OIC	5
	96-ball "LY"	Junction-to-board	TBD	°C/W	ΘJB	
	70 1 11 11 11 11 11	Junction-to-case (TOP)	4.9	°C/W	OIC	5
	78-ball "SA"	Junction-to-board	14.2	°C/W	ΘJB	
REV E	96-ball "LY"	Junction-to-case (TOP)	4.8	°C/W	ΘJC	5
	96-Dall LY	Junction-to-board	15.2	°C/W	ΘJB	
	78-ball	Junction-to-case (TOP)	2.8	°C/W	ΟLΘ	5
	"WE"	Junction-to-board	13.1	°C/W	ΘJB	
REV G	N/A	Junction-to-case (TOP)	N/A	°C/W	OIC	5
	N/A	Junction-to-board	N/A	°C/W	ΘJB	
	78-ball "SA"	Junction-to-case (TOP)	4.4	°C/W	OIC	5
REV H	78-Dali SA	Junction-to-board	13.2	°C/W	ΘJB	
KEV H		Junction-to-case (TOP)	3.4	°C/W	OIC	5
	96-ball "LY"	Junction-to-board	14.7	°C/W	ΘJB	
	79 hall #6A#	Junction-to-case (TOP)	6.0	°C/W	OIC	5
	78-ball "SA"	Junction-to-board	17.9	°C/W	ΘJB	
REV J	96-ball "TB"	Junction-to-case (TOP)	5.9	°C/W	ΘJC	5
	90-Dall IB.	Junction-to-board	17.4	°C/W	ΘJB	

Table 136: Thermal Characteristics (Continued)

Parameter/	Condition		Value	Units	Symbol	Notes
	78-ball "SA"	Junction-to-case (TOP)	8.2	°C/W	ΘJC	5
REV R	70-Dali JA	Junction-to-board	19.8	°C/W	ΘJB	
NEV N	96-ball "TB"	Junction-to-case (TOP)	8.1	°C/W	ΘJC	5
	90-Dali 15	Junction-to-board	19.2	°C/W	ΘJB	

Notes: 1. MAX operating case temperature. T_C is measured in the center of the package.

- 2. A thermal solution must be designed to ensure the DRAM device does not exceed the maximum T_C during operation.
- 3. Device functionality is not guaranteed if the DRAM device exceeds the maximum T_C during operation.
- 4. If T_C exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9µs interval refresh rate.
- 5. The thermal resistance data is based off of a typical number.

Figure 245: Thermal Measurement Point

Current Specifications – Measurement Conditions

I_{DD}, I_{PP}, and I_{DDO} Measurement Conditions

I_{DD}, I_{PP}, and I_{DDO} measurement conditions, such as test load and patterns, are defined in this section.

- I_{DD} currents (I_{DD0}, I_{DD1}, I_{DD2N}, I_{DD2NT}, I_{DD2P}, I_{DD2Q}, I_{DD3N}, I_{DD3P}, I_{DD4R}, I_{DD4W}, I_{DD5R}, I_{DD6N}, I_{DD6E}, I_{DD6R}, I_{DD6R}, I_{DD6}, I_{DD7}, DD8 and I_{DD9}) are measured as time-averaged currents with all V_{DD} balls of the device under test grouped together.
- I_{PP} currents are I_{PP3N} for standby cases (I_{DD2N} , I_{DD2NT} , I_{DD2P} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD8}), I_{PP0} for active cases (I_{DD0} , I_{DD1} , I_{DD4R} , I_{DD4W}), I_{PP5R} for the distributed refresh case (I_{DD5R}), I_{PP6x} for self refresh cases (I_{DD6N} , I_{DD6E} , I_{DD6R} , I_{DD6A}), I_{PP7} for the operating bank interleave read case (I_{DD7}) and I_{PP9} for the MBIST-PPR operation case. These have the same definitions as the I_{DD} currents referenced but are measured on the V_{PP} supply.
- I_{DDQ} currents are measured as time-averaged currents with V_{DDQ} balls of the device under test grouped together. Micron does not specify I_{DDO} currents.

• I_{PP} and I_{DDQ} currents are not included in I_{DD} currents, I_{DD} and I_{DDQ} currents are not included in I_{PP} currents, and I_{DD} and I_{PP} currents are not included in I_{DDQ} currents.

NOTE: I_{DDQ} values cannot be directly used to calculate the I/O power of the device. They can be used to support correlation of simulated I/O power to actual I/O power. In DRAM module application, I_{DDQ} cannot be measured separately because V_{DD} and V_{DDQ} are using a merged-power layer in the module PCB.

The following definitions apply for $I_{\text{DD}},\,I_{\text{PP}}$ and I_{DDQ} measurements.

- "0" and "LOW" are defined as $V_{IN} \leq V_{IL(AC)max}$
- "1" and "HIGH" are defined as $V_{IN} \! \geq \! V_{IH(AC)min}$
- "Midlevel" is defined as inputs V_{REF} = $V_{DD}/2$
- Timings used for I_{DD}, I_{PP} and I_{DDQ} measurement-loop patterns are provided in the Current Test Definition and Patterns section.
- Basic I_{DD}, I_{PP}, and I_{DDQ} measurement conditions are described in the Current Test Definition and Patterns section.
- Detailed I_{DD} , I_{PP} , and I_{DDQ} measurement-loop patterns are described in the Current Test Definition and Patterns section.
- Current measurements are done after properly initializing the device. This includes, but is not limited to, setting:

 $R_{ON} = R_{ZO}/7$ (34 ohm in MR1);

Qoff = 0B (output buffer enabled in MR1);

 $R_{TT(NOM)} = R_{ZO}/6$ (40 ohm in MR1);

 $R_{TT(WR)} = R_{ZQ}/2$ (120 ohm in MR2);

 $R_{TT(Park)} = disabled;$

TDQS feature disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR3; Gear-down mode disabled in MR3; Read/Write DBI disabled in MR5; DM disabled in MR5

- Define D = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, LOW, LOW, LOW}; apply BG/BA changes when directed.
- Define D_n = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, HIGH, HIGH, HIGH}; apply invert of BG/BA changes when directed above.

NOTE: The measurement-loop patterns must be executed at least once before actual current measurements can be taken, with the exception of IDD9 which may be measured any time after MBIST-PPR entry.

Figure 246: Measurement Setup and Test Load for I_{DDx}, I_{PPx}, and I_{DDQx}

Note: 1. Supported by I_{DDO} measurement.

I_{DD} Definitions

Symbol	Description
I _{DD0}	Operating One Bank Active-Precharge Current (AL = 0)
	CKE: HIGH; External clock: On; ^t CK, <i>n</i> RC, <i>n</i> RAS, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: HIGH between ACT and PRE; Command, address, bank group address, bank address inputs: partially toggling according to the next table; Data I/O: V _{DDQ} ; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2,
	2, (see the I _{DD0} Measurement-Loop Pattern table); Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: stable at 0; Pattern details: see the I _{DD0} Measurement-Loop Pattern table

Table 137: Basic I_{DD}, I_{PP}, and I_{DDQ} Measurement Conditions

Symbol	Description									
I _{PP0}	Operating One Bank Active-Precharge I _{PP} Current (AL = 0) Same conditions as I _{DD0} above									
I _{DD1}	Operating One Bank Active-Read-Precharge Current (AL = 0)									
	CKE: HIGH; External clock: on; ^t CK, <i>n</i> RC, <i>n</i> RAS, <i>n</i> RCD, CL: see the previous table; BL: 8; ⁷⁷ ⁵ AL: 0; CS_n: HIGH between ACT, RD, and PRE; Command, address, bank group address, bank address inputs, Data I/O: partially toggling according to the I _{DD1} Measurement-Loop Pattern table; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2, 2, (see the following table); Output buffer and R _{TT} : enabled in mode									
	registers; ² ODT Signal: stable at 0; Pattern details: see the I _{DD1} Measurement-Loop Pattern table									
I _{DD2N}	Precharge Standby Current (AL = 0)									
	CKE: HIGH; External clock: On; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address Inputs: partially toggling according to the I _{DD2N} and I _{DD3N} Measure- ment-Loop Pattern table; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and									
	R _{TT} : enabled in mode registers; ² ODT signal: stable at 0; Pattern details: see the I _{DD2N} and I _{DD3N} Measure- ment-Loop Pattern table									
I _{DD2NT}	Precharge Standby ODT Current									
	CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank gropup address, bank address inputs: partially toggling according to the I _{DD2NT} Measure- ment-Loop Pattern table; Data I/O: V _{SSQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and									
	R _{TT} : enabled in mode registers; ² ODT signal: toggling according to the I _{DD2NT} Measurement-Loop Pattern table; Pattern details: see the I _{DD2NT} Measurement-Loop Pattern table									
I _{DD2P}	Precharge Power-Down Current CKE: LOW; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity:									
	all banks closed; Output buffer and R_{TT} : Enabled in mode registers; ² ODT signal: stable at 0									
I _{DD2Q}	Precharge Quiet Standby Current									
	CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0									
I _{DD3N}	Active Standby Current (AL = 0)									
אניסם.	CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: partially toggling according to the I _{DD2N} and I _{DD3N} Measurement-Loop Pattern table; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0; Pattern details: see the I _{DD2N} and I _{DD3N} Measurement-Loop Pattern table									
I _{PP3N}	Active Standby I _{PP3N} Current (AL = 0) Same conditions as I _{DD3N} above									
I _{DD3P}	Active Power-Down Current (AL = 0) CKE: LOW; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 1; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity:									
	all banks open; Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0									

Table 137: Basic I_{DD}, I_{PP}, and I_{DDQ} Measurement Conditions

Symbol	Description									
I _{DD4R}	Operating Burst Read Current (AL = 0)									
DDAK	CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ⁵ AL: 0; CS_n: HIGH between RD; Com- mand, address, bank group address, bank address inputs: partially toggling according to the I _{DD4R} Measure- ment-Loop Pattern table; Data I/O: seamless read data burst with different data between one burst and the next one according to the I _{DD4R} Measurement-Loop Pattern table; DM_n: stable at 1; Bank activity: all banks open, RD commands cycling through banks: 0, 0, 1, 1, 2, 2, (see the I _{DD4R} Measurement-Loop Pattern table); Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0; Pattern details: see the I _{DD4R} Mea- surement-Loop Pattern table									
I _{DD4W}	Operating Burst Write Current (AL = 0)									
	CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: HIGH between WR; Com- mand, address, bank group address, bank address inputs: partially toggling according to the I _{DD4W} Measure- ment-Loop Pattern table; Data I/O: seamless write data burst with different data between one burst and the next one according to the I _{DD4W} Measurement-Loop Pattern table; DM: stable at 0; Bank activity: all banks open, WR commands cycling through banks: 0, 0, 1, 1, 2, 2, (see I _{DD4W} Measurement-Loop Pattern table); Output buffer and R _{TT} : enabled in mode registers (see note2); ODT signal: stable at HIGH; Pattern details: see the I _{DD4W} Measurement-Loop Pattern table									
I _{DD5R}	Distributed Refresh Current (1X REF)									
	CKE: HIGH; External clock: on; ^t CK, CL, <i>n</i> REFI: see the previous table; BL: 8; ¹ AL: 0; CS_n: HIGH between REF; Command, address, bank group address, bank address inputs: partially toggling according to the I _{DD5R} Mea- surement-Loop Pattern table; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: REF command every <i>n</i> REFI (see the I _{DD5R} Measurement-Loop Pattern table); Output buffer and R _{TT} : enabled in mode registers ² ; ODT signal: stable at 0; Pattern details: see the I _{DD5R} Measurement-Loop Pattern table									
I _{PP5R}	Distributed Refresh Current (1X REF) Same conditions as I _{DD5R} above									
I _{DD6N}	Self Refresh Current: Normal Temperature Range T _C : 0–85°C; Auto self refresh (ASR): disabled; ³ Self refresh temperature range (SRT): normal; ⁴ CKE: LOW; Exter- nal clock: off; CK_t and CK_c: LOW; CL: see the table above; BL: 8; ¹ AL: 0; CS_n, command, address, bank group address, bank address, data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: SELF REFRESH operation; Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: midlevel									
I _{DD6E}	Self Refresh Current: Extended Temperature Range ⁴									
	Self Refresh Current: Extended Temperature Range $^{-7}$ T _C : 0–95°C; Auto self refresh (ASR): disabled ⁴ ; Self refresh temperature range (SRT): extended; ⁴ CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8; ¹ AL: 0; CS_n, command, address, group bank address, bank address, data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF REFRESH operation; Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: midlevel									
I _{PP6x}	Self Refresh I _{PP} Current Same conditions as I _{DD6E} above									
I _{DD6R}	Self Refresh Current: Reduced Temperature Range T _C : 0–45°C; Auto self refresh (ASR): disabled; Self refresh temperature range (SRT): reduced; ⁴ CKE: LOW; Exter- nal clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8; ¹ AL: 0; CS_n, command, address, bank group address, bank address, data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF REFRESH operation; Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: midlevel									

Table 137: Basic $I_{\text{DD}},\,I_{\text{PP}},\,\text{and}\,\,I_{\text{DDQ}}$ Measurement Conditions

Symbol	Description									
I _{DD7}	Operating Bank Interleave Read Current									
	CKE: HIGH; External clock: on; ^t CK, <i>n</i> RC, <i>n</i> RAS, <i>n</i> RCD, <i>n</i> RRD, <i>n</i> FAW, CL: see the previous table; BL: 8; ⁵ AL: CL - 1; CS_n: HIGH between ACT and RDA; Command, address, group bank adress, bank address inputs: partially toggling according to the I_{DD7} Measurement-Loop Pattern table; Data I/O: read data bursts with different data between one burst and the next one according to the I_{DD7} Measurement-Loop Pattern table; Data I/O: read data bursts with different data between one burst and the next one according to the I_{DD7} Measurement-Loop Pattern table; DM: stable at 1; Bank activity: two times interleaved cycling through banks (0, 1,7) with different addressing, see the I_{DD7}									
	Measurement-Loop Pattern table; Output buffer and R _{TT} : enabled in mode registers; ² ODT signal: stable at 0; Pattern details: see the I _{DD7} Measurement-Loop Pattern table									
I _{PP7}	Operating Bank Interleave Read I _{PP} Current									
	Same conditions as I _{DD7} above									
I _{DD8}	Maximum Power Down Current									
	Place DRAM in MPSM then CKE: HIGH; External clock: on; ^t CK, CL: see the previous table; BL: 8; ¹ AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: V _{DDQ} ; DM_n:									
	stable at 1; Bank activity: all banks closed; Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0									
I _{DD9}	MBIST-PPR Current ⁷ Device in MBIST-PPR mode; External clock: on; CS_n: stable at 1 after MBIST-PPR entry; Command, address, bank group address, bank address inputs: stable at 1; Data I/O: V _{DDQ} ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and R _{TT} : Enabled in mode registers; ² ODT signal: stable at 0									
I _{PP9}	MBIST-PPR I _{PP} Current									
יייי	Same condition with I _{DD9} above									

Notes: 1. Burst length: BL8 fixed by MRS: set MR0[1:0] 00.

- 2. Output buffer enable: set MR1[12] 0 (output buffer enabled); set MR1[2:1] 00 ($R_{ON} = R_{ZQ}/7$); $R_{TT(NOM)}$ enable: set MR1[10:8] 011 ($R_{ZQ}/6$); $R_{TT(WR)}$ enable: set MR2[11:9] 001 ($R_{ZQ}/2$), and $R_{TT(Park)}$ enable: set MR5[8:6] 000 (disabled).
- 3. Auto self refresh (ASR): set MR2[6] 0 to disable or MR2[6] 1 to enable feature.
- 4. Self refresh temperature range (SRT): set MR2[7] 0 for normal or MR2[7] 1 for extended temperature range.
- 5. READ burst type: Nibble sequential, set MR0[3] 0.
- 6. In the dual-rank DDP case, note the following I_{DD} measurement considerations:
 - For all I_{DD} measurements except I_{DD6}, the unselected rank should be in an I_{DD2P} condition.
 - + For all I_{PP} measurements except I_{PP6} , the unselected rank should be in an I_{DD3N} condition.
 - + For all $I_{\text{DD6}}/I_{\text{PP6}}$ measurements, both ranks should be in the same I_{DD6} condition.
- 7. When measuring I_{DD9}/I_{PP9} after entering MBIST-PPR mode and ALERT_N driving LOW, there is a chance that the DRAM may perform an internal hPPR if fails are found after internal self-test is completed and before ALERT_N fires HIGH.

Current Specifications – Patterns and Test Conditions

Current Test Definitions and Patterns

Table 138: I_{DD0} and I_{PP0} Measurement-Loop Pattern¹

CK_t, CK_c	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			1, 2	D, D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3, 4	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
							Re	peat	patte	ern 1.	4 ur	ntil <i>n</i> F	RAS -	1; tru	incat	e if n	ecessa	ary	
			nRAS	PRE	0	1	0	1	0	0	0	0	0	0	0	0	0	0	_
					Repeat pattern 14 until <i>n</i> RC - 1; truncate if necessary														
		1	1 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead															
	gh	2	2 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead															
		3	3 × <i>n</i> RC		Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead														
þ		4	4 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead															
Toggling	c Hi	5	5 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead															
Tog	Static High	6	6 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead															
	0,	7	7 × <i>n</i> RC		Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead														
		8	8 × <i>n</i> RC				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 2	, use	BA[1:	0] = 0) inst	ead ⁴	
		9	9 × <i>n</i> RC				Rep	eat su	ub-loo	ор 0,	use B	G[1:0)] = 3	, use	BA[1:	0] = 1	1 inst	ead ⁴	
		10	10 × <i>n</i> RC				Rep	eat su	ub-lo	op 0,	use B	G[1:0)] = 2	, use	BA[1:	0] = 2	2 inst	ead ⁴	
		11	11 × <i>n</i> RC				Rep	eat su	ub-lo	op 0,	use B	G[1:0)] = 3	, use	BA[1:	0] = 3	3 inst	ead ⁴	
		12	12 × <i>n</i> RC	<u> </u>			Rep	eat su	ub-lo	op 0,	use B	G[1:0)] = 2	, use	BA[1:	0] = 1	1 inst	ead ⁴	
		13	13 × <i>n</i> RC	<u> </u>			Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 3	, use	BA[1:	0] = 2	2 inst	ead ⁴	
		14	14 × <i>n</i> RC				Rep	eat su	ub-lo	op 0,	use B	G[1:0)] = 2	, use	BA[1:	0] = 3	3 inst	ead ⁴	
		15	15 × <i>n</i> RC				Rep	eat su	ub-lo	ор 0,	use B	G[1:0)] = 3	, use	BA[1:	0] = () inst	ead ⁴	

Notes: 1. DQS_t, DQS_c are V_{DDQ}.

- 2. BG1 is a "Don't Care" for x16 devices.
- 3. DQ signals are V_{DDQ} .
- 4. For x4 and x8 only.

Table 139: I_{DD1} Measurement – Loop Pattern¹

CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			1, 2	D, D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			3, 4	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
						Re	peat	patte	ern 1	4 u	ntil <i>r</i>	RCD	- AL	- 1; t	runc	ate if	nece	essary	1
			<i>n</i> RCD - AL	RD	0	1	1	0	1	0	0	0	0	0	0	0	0	0	D0 = 00, D1 =
					Rep	eat p	attei	rn 1	.4 un	til <i>n</i> F	RAS -	1; tri	uncat	te if ı	neces	sary			FF, D2 = FF, D3 =
			nRAS	PRE	0	1	0	1	0	0	0	0	0	0	0	0	0	0	00,
					Repeat pattern 14 until <i>n</i> RC - 1; truncate if necessary												D4 = FF, D5 = 00,		
																			D5 = 00, D7 = FF
		1	1 × <i>n</i> RC + 0	ACT	0	0	0	1	1	0	1	1	0	0	0	0	0	0	_
			1 × <i>n</i> RC + 1, 2	D, D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			1 × <i>n</i> RC + 3, 4	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
	~				Rep	eat p	atte	rn <i>n</i> R	C + 1	l4 ι	Intil	1 × n	RC +	nRA	S - 1;	trun	cate	if neo	essary
Toggling	Static High		1 × nRC+nRCD - AL	RD	0	1	1	0	1	0	1	1	0	0	0	0	0	0	D0 = FF, D1 = 00, D2 = 00, D3 =
Ĕ	Sta				Rep	eat p	attei	rn 1	.4 un	til <i>n</i> F	RAS -	1; tri	uncat	te if i	neces	sary			FF,
			1 × <i>n</i> RC + <i>n</i> RAS	PRE	0	1	0	1	0	0	1	1	0	0	0	0	0	0	D4 = 00, D5 = FF, D5 = FF, D7 =
				Rep	beat p	oatte	rn <i>n</i> F	RC + 1	14 เ	until	2 × n	RC -	1; tru	incat	e if r	neces	sary		00
		2	2 × <i>n</i> RC			R	epea	t sub	-loop	o 0, u	se BC	G[1:0]] = 0,	use	BA[1:	= [0:	2 ins	tead	
		3	3 × <i>n</i> RC			R	epea	t sub	-loop	o 0, u	se BC	G[1:0]] = 1,	use	BA[1:	= [0:	3 ins [.]	tead	
		4	4 × <i>n</i> RC			R	epea	t sub	-loop	o 0, u	se BC	5[1:0]] = 0,	use	BA[1:	= [0:	1 ins [.]	tead	
		5	5 × <i>n</i> RC			R	epea	t sub	-loop	o 0, u	se BC	5[1:0]] = 1,	use	BA[1:	= [0:	2 ins [.]	tead	
		6	6 × <i>n</i> RC			R	epea	t sub	-loop	o 0, u	se BC	5[1:0]] = 0,	use	BA[1:	= [0:	3 ins [.]	tead	
		7	7 × <i>n</i> RC			R	epea	t sub	-loop	o 0, u	se BC	G[1:0]] = 1,	use	BA[1:	= [0:	0 ins	tead	
		8	9 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead ⁴															
		9	10 × <i>n</i> RC			Re	epeat	sub-	loop	0, us	e BG	[1:0]	= 3,	use E	BA[1:	0] = 1	1 inst	ead ⁴	
		10	11 × <i>n</i> RC			Re	epeat	: sub-	loop	0, us	e BG	[1:0]	= 2,	use E	BA[1:	0] = 2	2 inst	ead ⁴	
		11	12 × <i>n</i> RC		_	Re	epeat	: sub-	loop	0, us	e BG	[1:0]	= 3,	use E	BA[1:	0] = 3	3 inst	ead ⁴	
		12	13 × <i>n</i> RC			Re	epeat	: sub-	loop	0, us	e BG	[1:0]	= 2,	use E	BA[1:	0] = (1 inst	ead ⁴	

Table 139: I_{DD1} Measurement – Loop Pattern¹

CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
gr	igh	13	14 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead ⁴															
Toggling	tic H	14	15 × <i>n</i> RC	Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead ⁴															
To	Static	15	16 × <i>n</i> RC			Re	epeat	t sub	-loop	0, us	e BG	i[1:0]	= 3,	use B	BA[1:	0] = 0) inst	ead ⁴	

Notes: 1. DQS_t, DQS_c are V_{DDQ} when not toggling.

- 2. BG1 is a "Don't Care" for x16 devices.
- 3. DQ signals are V_{DDQ} except when burst sequence drives each DQ signal by a READ command.
- 4. For x4 and x8 only.

CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			2	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
		1	4–7				Rep	eat s	ub-lo	op 0,	use E	3G[1:	0] = 1	, use	BA[1	:0] =	1 inst	ead	
		2	8–11		Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 insteadRepeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead														
		3	12–15																
		4	16–19																
_	Ч	5	20–23		Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead														
ling	Hig	6	24–27				Rep	eat s	ub-lo	op 0,	use E	3G[1:	0] = 0	, use	BA[1	:0] =	3 inst	ead	
Toggling	Static High	7	28–31				Rep	eat s	ub-lo	op 0,	use E	3G[1:0	0] = 1	, use	BA[1	= [0:	0 inst	ead	
	St	8	32–35				Rep	eat sı	ub-loo	op 0,	use B	G[1:0)] = 2	use	BA[1:	0] = 0) inst	ead ⁴	
		9	36–39				Rep	eat sı	ub-loo	op 0,	use B	G[1:0)] = 3	use	BA[1:	0] = 1	l inst	ead ⁴	
		10	40–43				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 2	use	BA[1:	0] = 2	2 inst	ead ⁴	
		11	44–47				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 3	use	BA[1:	0] = 3	3 inst	ead ⁴	
		12	48–51				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 2	use	BA[1:	0] = 1	l inst	ead ⁴	
		13	52–55				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 3	use	BA[1:	0] = 2	2 inst	ead ⁴	
		14	56–59				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 2	use	BA[1:	0] = 3	3 inst	ead ⁴	
		15	60–63				Rep	eat su	ub-loo	op 0,	use B	G[1:0)] = 3	use	BA[1:	0] = 0) inst	ead ⁴	

Notes: 1. DQS_t, DQS_c are V_{DDQ}.

- 2. BG1 is a "Don't Care" for x16 devices.
- 3. DQ signals are V_{DDQ} .
- 4. For x4 and x8 only.

Table 141: I_{DD2NT} Measurement – Loop Pattern¹

CK_c, CK_t,	СКЕ	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	_
			2	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
		1	4–7			Repea	at suk	o-loop	o 0 w	ith O	DT =	1, use	e BG[1:0] =	: 1, us	se BA	[1:0]	= 1 in	stead
		2	8–11		Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 2 insteadRepeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 3 instead														
		3	12–15		Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 3 instead Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 1 instead Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 2 instead														
		4	16–19																
_	Ч	5	20–23																
lling	Hig	6	24–27		l	Repea	at suk	p-loop	o 0 w	ith O	DT =	0, use	e BG[1:0] =	0, us	e BA	[1:0] :	= 3 in	stead
Toggling	Static High	7	28–31			Repea	at suk	p-loop	o 0 w	ith O	DT =	1, use	BG[1:0] =	: 1, us	e BA	[1:0] :	= 0 in	stead
-	St	8	32–35		F	Repea	it sub	-loop	0 wi	th O[OT = (), use	BG[1	:0] =	2, us	e BA[1:0] =	= 0 ins	stead ⁴
		9	36–39		F	Repea	it sub	-loop	0 wi	th OI	DT = 1	1, use	BG[1	:0] =	3, us	e BA[1:0] =	= 1 in:	stead ⁴
		10	40–43		F	Repea	it sub	-loop	0 wi	th OI	OT = (), use	BG[1	:0] =	2, us	e BA[1:0] =	= 2 in:	stead ⁴
		11	44–47		F	Repea	it sub	-loop	0 wi	th OI	DT = 1	1, use	BG[1	:0] =	3, us	e BA[1:0] =	= 3 in:	stead ⁴
		12	48–51		F	Repea	it sub	-loop	0 wi	th OI	OT = (), use	BG[1	:0] =	2, us	e BA[1:0] =	= 1 in:	stead ⁴
		13	52–55		F	Repea	it sub	-loop	0 wi	th OI	DT = 1	1, use	BG[1	:0] =	3, us	e BA[1:0] =	= 2 in:	stead ⁴
		14	56–59		F	Repea	it sub	-loop	0 wi	th OI	OT = (), use	BG[1	:0] =	2, us	e BA[1:0] =	= 3 in:	stead ⁴
		15	60–63		F	Repea	ıt sub	-loop	0 wi	th OI	DT = 1	1, use	BG[1	:0] =	3, us	e BA[1:0] =	= 0 in:	stead ⁴

Notes: 1. DQS_t, DQS_c are V_{SSQ}.

- 2. BG1 is a "Don't Care" for x16 devices.
- 3. DQ signals are V_{SSQ}.
- 4. For x4 and x8 only.

CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	RD	0	1	1	0	1	0	0	0	0	0	0	0	0	0	D0 = 00, D1 = FF,
			1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	D2 = FF, D3 = 00, D4 = FF, D5 = 00,
			2, 3	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	D5 = 00, D7 = FF
		1	4	RD	0	1	1	0	1	0	1	1	0	0	0	7	F	0	D0 = FF, D1 = 00
			5	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	D2 = 00, D3 = FF D4 = 00, D5 = FF
			6, 7	D_n, D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	D5 = FF, D7 = 00
		2	8–11				Repe	eat su	ub-lo	op 0,	use	BG[1	= [0:	0, use	e BA[1:0] =	= 2 in	stead	k
		3	12–15				Repe	eat si	ub-lo	op 1,	use	BG[1	= [0:	1, use	e BA[[1:0] =	= 3 in	stead	k
5	h	4	16–19				Repe	eat si	ub-lo	op 0,	use	BG[1	= [0:	0, use	e BA[[1:0] =	= 1 in	stead	k
Toggling	Static High	5	20–23				Repe	eat si	ub-lo	op 1,	use	BG[1:	= [0:	1, use	e BA[[1:0] =	= 2 in	stead	k
Tog	tatic	6	24–27				Repe	eat si	ub-lo	op 0,	use	BG[1:	= [0:	0, use	e BA[[1:0] =	= 3 in	stead	k
	ò	7	28–31				Repe	eat su	ub-lo	op 1,	use	BG[1:	= [0:	1, use	e BA[[1:0] =	= 0 in	stead	k
		8	32–35				Repe	eat su	b-loc	op 0,	use E	3G[1:	0] = 2	2, use	BA[1:0] =	• 0 in:	stead	4
		9	36–39				Repe	eat su	b-loc	op 1,	use E	3G[1:	0] = 3	8, use	BA[1:0] =	= 1 in:	stead	4
		10	40–43				Repe	eat su	b-loc	op 0,	use E	3G[1:	0] = 2	2, use	BA[1:0] =	= 2 in:	stead	4
		11	44–47				Repe	eat su	b-loc	op 1,	use E	3G[1:	0] = 3	8, use	BA[1:0] =	= 3 in:	stead	4
		12	48–51				Repe	eat su	b-loc	op 0,	use E	3G[1:	0] = 2	2, use	BA[1:0] =	= 1 in:	stead	4
		13	52–55				Repe	eat su	b-loc	op 1,	use E	3G[1:	0] = 3	B, use	BA[1:0] =	= 2 in:	stead	4
		14	56–59				Repe	eat su	b-loc	op 0,	use E	3G[1:	0] = 2	2, use	BA[1:0] =	= 3 in:	stead	4
		15	60–63				Repe	eat su	b-loc	op 1,	use E	3G[1:	0] = 3	8, use	BA[1:0] =	= 0 in:	stead	4

Notes: 1. DQS_t, DQS_c are V_{DDQ} when not toggling.

2. BG1 is a "Don't Care" for x16 devices.

3. Burst sequence driven on each DQ signal by a READ command. Outside burst operation, DQ signals are V_{DDQ}.

Table 143: I_{DD4W} Measurement – Loop Pattern¹

CK_c, CK_t,	СКЕ	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	WR	0	1	1	0	0	1	0	0	0	0	0	0	0	0	D0 = 00, D1 = FF,
			1	D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = FF, D3 = 00, D4 = FF, D5 = 00,
			2, 3	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D5 = 00, D7 = FF
		1	4	WR	0	1	1	0	0	1	1	1	0	0	0	7	F	0	D0 = FF, D1 = 00
			5	D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = 00, D3 = FF D4 = 00, D5 = FF
			6, 7	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D5 = FF, D7 = 00
		2	8–11		1	1	Re	peat	sub-	loop	0, us	e BG	1:0] :	= 0, u	se BA	A[1:0] = 2	inste	ad
		3	12–15		Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead														
5	h	4	16–19																ad
gling	: Hig	5	20–23				Re	epeat	sub-	loop	1, us	e BG	[1:0] =	= 1, u	ise BA	4[1:0] = 2	inste	ad
Toggling	Static High	6	24–27				Re	epeat	sub-	loop	0, us	e BG	[1:0] :	= 0, u	ise BA	4[1:0] = 3	inste	ad
	S	7	28–31				Re	epeat	sub-	loop	1, us	e BG	[1:0] =	= 1, u	ise BA	4[1:0] = 0	inste	ad
		8	32–35				Re	peat	sub-l	оор	0, use	BG[1:0] =	2, u	se BA	[1:0]	= 0 i	nstea	ad ⁴
		9	36–39				Re	peat	sub-l	оор	1, use	BG[1:0] =	: 3, u	se BA	[1:0]	= 1 i	nstea	ad ⁴
		10	40–43				Re	peat	sub-l	оор	0, use	BG[1:0] =	: 2, u	se BA	[1:0]	= 2 i	nstea	ad ⁴
		11	44–47				Re	peat	sub-l	оор	1, use	BG[1:0] =	= 3, u	se BA	[1:0]	= 3 i	nstea	ad ⁴
		12	48–51				Re	peat	sub-l	оор	0, use	BG[1:0] =	= 2, u	se BA	[1:0]	= 1 i	nstea	ad ⁴
		13	52–55				Re	peat	sub-l	оор	1, use	BG[1:0] =	: 3, u	se BA	[1:0]	= 2 i	nstea	ad ⁴
		14	56–59				Re	peat	sub-l	оор	0, use	BG[1:0] =	: 2, u	se BA	[1:0]	= 3 i	nstea	ad ⁴
		15	60–63				Re	peat	sub-l	оор	1, use	BG[1:0] =	: 3, u	se BA	[1:0]	= 0 i	nstea	ad ⁴

Notes: 1. DQS_t, DQS_c are V_{DDQ} when not toggling.

2. BG1 is a "Don't Care" for x16 devices.

3. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are V_{DDQ}.

Table 144: I_{DD4Wc} Measurement – Loop Pattern¹

CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ³	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ⁴
		0	0	WR	0	1	1	0	0	1	0	0	0	0	0	0	0	0	D0 = 00, D1 = FF,
			1, 2	D, D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = FF, D3 = 00, D4 = FF, D5 = 00,
			3, 4	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D8 = CRC
		1	5	WR	0	1	1	0	0	1	1	1	0	0	0	7	F	0	D0 = FF, D1 = 00,
			6, 7	D, D	1	0	0	0	0	1	0	0	0	0	0	0	0	0	D2 = 00, D3 = FF, D4 = 00, D5 = FF,
			8, 9	D_n, D_n	1	1	1	1	0	1	3	3	0	0	0	7	F	0	D5 = FF, D7 = 00 D8 = CRC
		2	10–14		D_n D8 = CRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 1 instead Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead														
		3	15–19																
D	h	4	20–24																
Toggling	Static High	5	25–29				Re	epeat	sub-	loop	1, us	e BG[[1:0] =	= 1, u	ise BA	A[1:0]] = 2	inste	ad
Tog	tatio	6	30–34				Re	epeat	sub-	loop	0, us	e BG[[1:0] :	= 0, u	ise BA	A[1:0]] = 3	inste	ad
	S	7	35–39				Re	epeat	sub-	loop	1, us	e BG[[1:0] :	= 1, u	ise BA	A[1:0]] = 0	inste	ad
		8	40–44				Re	peat	sub-l	oop	0, use	BG[1:0] =	= 2, u	se BA	[1:0]	= 0 i	nstea	ad ⁴
		9	45–49				Re	peat	sub-l	oop	1, use	BG[1:0] =	= 3, u	se BA	[1:0]	= 1 i	nstea	ad ⁴
		10	50–54				Re	peat	sub-l	oop	0, use	BG[1:0] =	= 2, u	se BA	[1:0]	= 2 i	nstea	ad ⁴
		11	55–59				Re	peat	sub-l	oop	1, use	BG[1:0] =	= 3, u	se BA	[1:0]	= 3 i	nstea	ad ⁴
		12	60–64				Re	peat	sub-l	oop	0, use	BG[1:0] =	= 2, u	se BA	[1:0]	= 1 i	nstea	ad ⁴
		13	65–69				Re	peat	sub-l	oop	1, use	BG[1:0] =	= 3, u	se BA	[1:0]	= 2 i	nstea	ad ⁴
		14	70–74				Re	peat	sub-l	oop	0, use	BG[1:0] =	= 2, u	se BA	[1:0]	= 3 i	nstea	ad ⁴
		15	75–79				Re	peat	sub-l	оор	1, use	BG[1:0] =	= 3, u	se BA	[1:0]	= 0 i	nstea	ad ⁴

Notes: 1. Pattern provided for reference only.

2. DQS_t, DQS_c are V_{DDQ} when not toggling.

3. BG1 is a "Don't Care" for x16 devices.

4. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are V_{DDQ}.

Table 145: I_{DD5R} Measurement – Loop Pattern¹

CK_c, CK_t,	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	REF	0	1	0	0	1	0	0	0	0	0	0	0	0	0	_
		1	1	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			2	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
			4	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	_
			5–8		Repeat pattern 14, use BG[1:0] = 1, use BA[1:0] = 1 insteadRepeat pattern 14, use BG[1:0] = 0, use BA[1:0] = 2 insteadRepeat pattern 14, use BG[1:0] = 1, use BA[1:0] = 3 instead														
			9–12		Repeat pattern 14, use BG[1:0] = 0, use BA[1:0] = 2 instead														
			13–16		Repeat pattern 14, use BG[1:0] = 1, use BA[1:0] = 3 insteadRepeat pattern 14, use BG[1:0] = 0, use BA[1:0] = 1 instead														
			17–20		Repeat pattern 14, use BG[1:0] = 1, use BA[1:0] = 3 instead														
	Ч		21–24		Repeat pattern 14, use BG[1:0] = 0, use BA[1:0] = 1 instead														
Toggling	Static High		25–28			F	lepea	t pat	tern	14,	use B	G[1:0	0] = 0	, use	BA[1:	:0] = 3	3 inst	ead	
000	atic		29–32			R	lepea	t pat	tern	14,	use B	G[1:0)] = 1	, use	BA[1:	:0] = (0 inst	ead	
	St		33–36			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 2,	use E	3A[1:	0] = 0) inste	ead ⁴	
			37–40			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 3,	use E	3A[1:	0] = 1	inste	ead ⁴	
			41–44			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 2,	use E	BA[1:	0] = 2	2 inste	ead ⁴	
			45–48			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 3,	use E	3A[1:	0] = 3	8 inste	ead ⁴	
			49–52			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 2,	use E	BA[1:	0] = 1	inste	ead ⁴	
			53–56			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 3,	use I	3A[1:	0] = 2	2 inste	ead ⁴	
			57–60			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 2,	use E	3A[1:	0] = 3	8 inste	ead ⁴	
			61–64			R	epea	t patt	ern 1	4, ı	use B	G[1:0] = 3,	use E	3A[1:	0] = 0) inste	ead ⁴	
		2	65 <i>n</i> REFI - 1					R	lepea	t sub	-loop) 1; tr	unca	te if r	neces	sary			

Notes: 1. DQS_t, DQS_c are V_{DDQ}.

- 2. BG1 is a "Don't Care" for x16 devices.
- 3. DQ signals are V_{DDQ} .
- 4. For x4 and x8 only.

Table 146: I_{DD7} Measurement – Loop Pattern¹

CK_t, CK_c	CKE	Sub-Loop	Cycle Number	Command	CS_n	ACT_n	RAS_n/A16	CAS_n/A15	WE_n/A14	ODT	BG[1:0] ²	BA[1:0]	A12/BC_n	A[17,13,11]]	A[10]/AP	A[9:7]	A[6:3]	A[2:0]	Data ³
		0	0	ACT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			1	RDA	0	1	1	0	1	0	0	0	0	0	1	0	0	0	
			2	D	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			3	D_n	1	1	1	1	1	0	3	3	0	0	0	7	F	0	-
					Rep	eat p	atter	n 2	3 un	til <i>n</i> R	RD -	1, if <i>i</i>	nRRD	> 4.	Trun	cate	if neo	cessar	у
		1	nRRD	ACT	0	0	0	0	0	0	1	1	0	0	0	0	0	0	-
			nRRD+1	RDA	0	1	1	0	1	0	1	1	0	0	1	0	0	0	
				F	Repea	•						-		RD > 4					ary
		2	2 × <i>n</i> RRD	3 × <i>n</i> RRD Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead															
		3	4 × nRRD Repeat pattern 23 until nFAW - 1, if nFAW > 4 × nRRD. Truncate if necessary																
		4																	
	_	5	nFAW Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead																
ing	Static High	6	nFAW + nRRD			-			-										
Toggling	tic F	7	<i>n</i> FAW + 2 × <i>n</i> RRD											e BA					
Ĕ	Sta	8	nFAW + 3 × nRRD			Rep	eat s	ub-lo	oop 1					e BA	[1:0]	= 0 ir	nstea	d	
		9	<i>n</i> FAW + 4 × <i>n</i> RRD								peat		•						
		10	2 × <i>n</i> FAW											e BA					
		11	2 × <i>n</i> FAW + <i>n</i> RRD						-					e BA					
		12	2 × <i>n</i> FAW + 2 × <i>n</i> RRD							-	_	-	-	e BA					
		13	2 × <i>n</i> FAW + 3 × <i>n</i> RRD			Rep	oeat s	ub-lo	op 1	-	_	-	-	e BA	[1:0]	= 3 ir	nstea	d	
		14	2 × <i>n</i> FAW + 4 × <i>n</i> RRD								peat								
		15	3 × <i>n</i> FAW							-	_	-	-	e BA					
		16	3 × <i>n</i> FAW + <i>n</i> RRD						•	-	-	-	-	e BA					
		17	3 × nFAW + 2 × nRRD						-					e BA					
		18	3 × nFAW + 3 × nRRD			Rep	eat s	ub-lo	oop 1					e BA	[1:0]	= 0 ir	nstea	d	
		19	3 × <i>n</i> FAW + 4 × <i>n</i> RRD								peat								
		20	4 × <i>n</i> FAW	R	epea	t pati	tern 2	23 u	until	nRC -	· 1, if	nRC	> 4 ×	nFA\	W. Tr	unca	te if ı	neces	sary

Notes: 1. DQS_t, DQS_c are V_{DDQ}.

2. BG1 is a "Don't Care" for x16 devices.

3. DQ signals are V_{DDQ} except when burst sequence drives each DQ signal by a READ command.

I_{DD} Specifications

		DD	R4-1	600	DD	R4-1	866	DD	R4-2	133	DD	R4-2	400	DD	R4-2	666	DD	R4-2	933	DD	R4-3	200	
Symb	ool	10-10-10	11-11-11	12-12-12	12-12-12	13-13-13	14-14-14	14-14-14	15-15-15	16-16-16	16-16-16	17-17-17	18-18-18	18-18-18	19-19-19	20-20-20	20-20-20	21-21-21	22-22-22	20-20-20	22-22-22	24-24-24	Unit
^t CK			1.25	•		1.071			0.937	,		0.833			0.75	•		0.682)		0.625	5	ns
CL		10	11	12	12	13	14	14	15	16	16	17	18	18	19	20	20	21	22	20	22	24	СК
CWI	L	9	11	11	10	12	12	11	14	14	16	16	16	18	18	18	14	18	18	16	20	20	СК
nRCI	D	10	11	12	12	13	14	14	15	16	16	17	18	18	19	20	19	20	21	20	22	24	СК
nRC		38	39	40	44	45	46	50	51	52	55	56	57	61	62	63	66	67	68	72	74	76	СК
<i>n</i> RP)	10	11	12	12	13	14	14	15	16	16	17	18	18	19	20	19	20	21	20	22	24	СК
nRA	S		28			32			36			39			43			47			52		СК
nFAW	x4 ¹		16			16			16			16			16			16			16		СК
	x8		20			22			23			26			28			31			34		СК
	x1 6		28			28			32			36			40			44			48		СК
nRRD_	x4		4			4			4			4			4			4			4		CK
S	x8		4			4			4			4			4			4			4		СК
	x1 6		5			6			6			7			8			8			9		СК
nRRD_	x4		5			5			6			6			7			8			8		СК
L	x8		5			5			6			6			7			8			8		СК
	x1 6		6			6			7			8			9			10			11		СК
nCCD	_S		4			4			4			4			4			4			4		СК
nCCD			5			5			6			6			7			8			8		СК
nWTR			2			3			3			3			4			4			4		СК
<i>n</i> WTR			6			7			8			9			10			11			12		СК
nREF			6,240			7,283	}		8,325	5		9,364	ŀ	1	0,40	0	1	1,43	7	Í	12,48	0	СК
nRFC 2			128			150			171			193			214			235			256		СК
nRFC 4			208			243			278			313			347			382			416		СК
nRFC 8			280			327			374			421			467			514			560		СК
nRFC 1	6Gb		280			327			374			421			467			514			560		СК

Table 147: Timings used for I_{DD} , I_{PP} , and I_{DDQ} Measurement – Loop Patterns

Notes: 1. 1KB based x4 use same numbers of clocks for *n*FAW as the x8.

Current Specifications – Limits

Table 148: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. A (0° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	Unit
IDD0: One bank ACTIVATE-to-PRE-	x4, x8	55	60	65	TBD	mA
CHARGE current	x16	85	90	95	TBD	mA
IPP0: One bank ACTIVATE-to-PRE-	x4, x8	3	3	3	TBD	mA
CHARGE I _{PP} current	x16	4	4	4	TBD	mA
IDD1: One bank ACTIVATE-to-READ-to-	x4, x8	70	75	80	TBD	mA
PRECHARGE current	x16	105	110	115	TBD	mA
IDD2N: Precharge standby current	x4, x8	45	50	55	TBD	mA
	x16	65	70	75	TBD	mA
IDD2NT: Precharge standby ODT current	x4, x8	55	60	65	TBD	mA
	x16	75	80	90	TBD	mA
I_{DD2P}: Precharge power-down current	x4, x8	25	30	35	TBD	mA
	x16	45	50	55	TBD	mA
I DD2Q: Precharge quiet standby current	x4, x8	45	45	50	TBD	mA
	x16	65	65	70	TBD	mA
IDD3N: Active standby current	x4, x8	55	55	60	TBD	mA
	x16	75	75	85	TBD	mA
I_{PP3N}: Active standby I _{PP} current	ALL	3	3	3	TBD	mA
IDD3P: Active power-down current	x4, x8	35	40	40	TBD	mA
	x16	55	60	65	TBD	mA
IDD4R: Burst read current	x4	135	145	160	TBD	mA
	x8	150	150	175	TBD	mA
	x16	210	230	250	TBD	mA
IDD4W: Burst write current	x4	135	145	160	TBD	mA
	x8	150	160	175	TBD	mA
	x16	210	230	250	TBD	mA
I_{DD5R}: Distributed refresh current (1X	x4, x8	64	64	68	TBD	mA
REF)	x16	84	84	94	TBD	mA
I_{PP5R}: Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	TBD	mA
IDD6N: Self refresh current; 0–85°C ¹	ALL	30	30	30	TBD	mA
IDD6E: Self refresh current; 0–95°C ^{2, 4}	x4, x8	35	35	35	TBD	mA
	x16	50	50	50		mA
IDD6R: Self refresh current; 0–45C ^{3, 4}	ALL	25	25	25	TBD	mA
I DD6A: Auto self refresh current (25°C) ⁴	ALL	20	20	20	TBD	mA

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	Unit
I DD6A: Auto self refresh current (45°C) ⁴	ALL	25	25	25	TBD	mA
IDD6A: Auto self refresh current (75°C) ⁴	x4, x8	35	35	35	TBD	mA
	x16	50	50	50	TBD	mA
I_{PP6x}: Auto self refresh I _{PP} current; 0−95°C ²⁵	ALL	5	5	5		mA
IDD7: Bank interleave read current	x4	250	255	265	TBD	mA
	x8	200	205	215	TBD	mA
	x16	265	270	280	TBD	mA
I_{PP7}: Bank interleave read I _{PP} current	x4	25	25	25	TBD	mA
	x8	15	15	15	TBD	
	x16	20	20	20	TBD	mA
IDD8: Maximum power-down current	ALL	20	20	20	TBD	mA

Table 148: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. A ($0^{\circ} \le T_C \le 85^{\circ}$ C)

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation $(0-85^{\circ}C)$.

- Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
- 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation $(0-45^{\circ}C)$.
- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, I_{DD6A} values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0} , current changes by approximately 0%.
- 6. When additive latency is enabled for I_{DD1}, current changes by approximately +5%(x4/x8), +4%(x16).
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately +0%.
- 8. When DLL is disabled for I_{DD2N} , current changes by approximately -23%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately –25%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N}, current changes by approximately +7%.
- 12. When additive latency is enabled for I_{DD3N} , current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately 0%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W}, current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately +10%(x4/x8), +10%(x16).
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12% (x8), +12% (x16).
- 19. When 2X REF is enabled for IDD5R, current changes by approximately -14%.
- 20. When 4X REF is enabled for I_{DD5R} , current changes by approximately -33%.
- 21. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 22. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 23. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
- 24. The I_{DD} values must be derated (increased) when operated outside of the range 0°C \leq T_C \leq 85°C: When T_C < 0°C: I_{DD2P}, and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by 4%; I_{DD6}, I_{DD6ET}, and I_{DD7} must be derated by 11%.

8Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits

When $T_C > 85^{\circ}$ C: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by 3%; I_{DD2P} must be derated by 40%. These values are verified by design and characterization, and may not be subject to production test.

25. I_{PP6x} is applicable to I_{DD6N} , I_{DD6E} , I_{DD6R} and I_{DD6A} conditions.

Table 149: I_{DD}, I_{PP}, and I_{DDQ} Current Limits; Die Rev. B ($0^{\circ} \le T_C \le 85^{\circ}$ C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
l _{DD0} : One bank ACTI-	x4	40	43	46	49	52	mA
VATE-to-PRECHARGE cur- rent	x8	45	48	51	54	57	mA
Tent	x16	75	80	85	90	95	mA
IPP0: One bank ACTI-	x4, x8	3	3	3	3	3	mA
VATE-to-PRECHARGE I _{PP} current	x16	4	4	4	4	4	mA
I_{DD1:} One bank ACTI-	x4	52	55	58	61	64	mA
VATE-to-READ-to- PRE- CHARGE current	x8	57	60	63	66	69	mA
CHARGE Current	x16	95	100	105	110	115	mA
I _{DD2N} : Precharge standby current	ALL	33	34	35	36	37	mA
IDD2NT: Precharge standby	x4, x8	45	50	50	55	60	mA
ODT current	x16	67	75	75	78	81	mA
I _{DD2P} : Precharge power-down current	ALL	25	25	25	25	25	mA
I _{DD2Q} : Precharge quiet standby current	ALL	30	30	30	30	30	mA
IDD3N: Active standby cur-	x4	35	38	41	44	47	mA
rent	x8	40	43	46	49	52	mA
	x16	44	47	50	53	56	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x4	30	32	34	36	38	mA
current	x8	35	37	39	41	43	mA
	x16	39	41	43	45	47	mA
IDD4R: Burst read current	x4	100	110	121	132	143	mA
	x8	125	135	146	157	168	mA
	x16	225	243	263	283	302	mA
IDD4W: Burst write current	x4	95	103	112	121	130	mA
	x8	115	123	132	141	150	mA
	x16	213	228	244	261	278	mA
IDD5R: Distributed refresh	x4, x8	50	53	56	59	62	mA
current (1X REF)	x16	56	59	61	64	67	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA

Table 149: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. B ($0^{\circ} \le T_{C} \le 85^{\circ}$ C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
I_{DD6N}: Self refresh current; 0–85°C ¹	ALL	30	30	30	30	30	mA
I_{DD6E}: Self refresh current; 0–95°C ^{2, 4}	ALL	35	35	35	35	35	mA
I_{DD6R}: Self refresh current; 0–45C ^{3, 4}	ALL	20	20	20	20	20	mA
I_{DD6A} : Auto self refresh current (25°C) ⁴	ALL	8.6	8.6	8.6	8.6	8.6	mA
I_{DD6A} : Auto self refresh current (45°C) ⁴	ALL	20	20	20	20	20	mA
I_{DD6A} : Auto self refresh current (75°C) ⁴	ALL	30	30	30	30	30	mA
I_{PP6x}: Auto self refresh I _{PP} current; 0–95°C ²⁵	ALL	5	5	5	5	5	mA
IDD7: Bank interleave read	x4	175	185	200	215	230	mA
current	x8	170	175	180	185	190	mA
	x16	239	249	259	269	279	mA
I _{PP7} : Bank interleave read	x4	16	17	18	19	20	mA
I _{PP} current	x8	15	15	15	15	15	mA
	x16	20	20	20	20	20	mA
l _{DD8} : Maximum power-down current	ALL	25	25	25	25	25	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation $(0-85^{\circ}C)$.

2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).

3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation $(0-45^{\circ}C)$.

- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, Values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0}, current changes by approximately 0%.
- 6. When additive latency is enabled for I_{DD1}, current changes by approximately +5%(x4/x8), +4%(x16).
- 7. When additive latency is enabled for I_{DD2N} , current changes by approximately 0%.
- 8. When DLL is disabled for I_{DD2N}, current changes by approximately –23%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately -25%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +7%.
- 12. When additive latency is enabled for I_{DD3N} , current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R} , current changes by approximately 0%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W} , current changes by approximately +10%(x4/x8), +10%(x16).

8Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits

- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12% (x8), +12% (x16).
- 19. When 2X REF is enabled for I_{DD5R}, current changes by approximately –14%.
- 20. When 4X REF is enabled for I_{DD5R}, current changes by approximately –33%.
- 21. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 22. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 23. DDR4-1600 and DDR4-1866 use the same $I_{\mbox{DD}}$ limits as DDR4-2133.
- 24. The I_{DD} values must be derated (increased) when operated outside of the range $0^{\circ}C \le T_C \le 85^{\circ}C$:
 - When T_C < 0°C: I_{DD2P}, and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by 4%; I_{DD6}, I_{DD6ET}, and I_{DD7} must be derated by 11%.

When $T_C > 85^{\circ}C$: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by 3%; I_{DD2P} must be derated by 40%. These values are verified by design and characterization, and may not be subject to production test.

25. I_{PP6x} is applicable to $I_{DD6N},\,I_{DD6E},\,I_{DD6R}$ and I_{DD6A} conditions.

Table 150: I_{DD} , I_{PP} , and I_{DDO} Current Limits; Die Rev. D ($0^{\circ} \le T_C \le 85^{\circ}$ C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDD0: One bank ACTI-	x4	40	43	46	49	52	mA
VATE-to-PRECHARGE cur-	x8	45	48	51	54	57	mA
rent	x16	75	80	85	90	95	mA
IPP0: One bank ACTI-	x4, x8	3	3	3	3	3	mA
VATE-to-PRECHARGE I _{PP} current	x16	4	4	4	4	4	mA
I _{DD1} : One bank ACTI-	x4	52	55	58	61	64	mA
VATE-to-READ-to- PRE- CHARGE current	x8	57	60	63	66	69	mA
CHARGE Current	x16	95	100	105	110	115	mA
I _{DD2N} : Precharge standby current	ALL	33	34	35	36	37	mA
IDD2NT: Precharge standby	x4, x8	45	50	50	55	60	mA
ODT current	x16	67	75	75	78	81	mA
I _{DD2P} : Precharge power-down current	ALL	25	25	25	25	25	mA
I _{DD2Q} : Precharge quiet standby current	ALL	30	30	30	30	30	mA
IDD3N: Active standby cur-	x4	40	43	46	49	52	mA
rent	x8	45	48	51	54	56	mA
	x16	49	52	55	58	61	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x4	30	32	34	36	38	mA
current	x8	35	37	39	41	43	mA
	x16	39	41	43	45	47	mA

Table 150: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. D ($0^{\circ} \le T_C \le 85^{\circ}$ C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDD4R: Burst read current	x4	100	110	121	132	143	mA
	x8	125	135	146	157	168	mA
	x16	225	243	263	283	302	mA
IDD4W: Burst write current	x4	105	113	122	130	140	mA
	x8	125	132	142	150	160	mA
	x16	225	240	255	270	290	mA
IDD5R: Distributed refresh	x4, x8	56	58	61	64	66	mA
current (1X REF)	x16	61	64	67	69	72	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA
I _{DD6N} : Self refresh current; 0–85°C ¹	ALL	31	31	31	31	31	mA
I_{DD6E} : Self refresh current; 0–95°C ^{2, 4}	ALL	36	36	36	36	36	mA
I_{DD6R}: Self refresh current; 0–45C ^{3, 4}	ALL	21	21	21	21	21	mA
IDD6A: Auto self refresh cur- rent (25°C) ⁴	ALL	8.6	8.6	8.6	8.6	8.6	mA
I_{DD6A} : Auto self refresh current (45°C) ⁴	ALL	21	21	21	21	21	mA
IDD6A: Auto self refresh cur- rent (75°C) ⁴	ALL	31	31	31	31	31	mA
I_{PP6x}: Auto self refresh I _{PP} current; 0–95°C ²⁵	ALL	5	5	5	5	5	mA
IDD7: Bank interleave read	x4	175	185	200	215	230	mA
current	x8	170	175	180	185	190	mA
	x16	239	249	259	269	279	mA
IPP7: Bank interleave read	x4	16	17	18	19	20	mA
I _{PP} current	x8	15	15	15	15	15	mA
	x16	20	20	20	20	20	mA
I_{DD8: Maximum power-down current}	ALL	25	25	25	25	25	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation $(0-85^{\circ}C)$.

2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).

3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (0–45°C).

4. I_{DD6E}, I_{DD6R}, I_{DD6R}, I_{DD6A} values are verified by design and characterization, and may not be subject to production test.

5. When additive latency is enabled for I_{DD0} , current changes by approximately 0%.

8Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits

- 6. When additive latency is enabled for I_{DD1}, current changes by approximately +5%(x4/x8), +4%(x16).
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately 0%.
- 8. When DLL is disabled for I_{DD2N} , current changes by approximately –23%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately –25%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N}, current changes by approximately +7%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately 0%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W}, current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately +10%(x4/x8), +10%(x16).
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12% (x8), +12% (x16).
- 19. When 2X REF is enabled for IDD5R, current changes by approximately -14%.
- 20. When 4X REF is enabled for I_{DD5R} , current changes by approximately -33%.
- 21. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 22. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 23. DDR4-1600 and DDR4-1866 use the same $I_{\mbox{DD}}$ limits as DDR4-2133.
- 24. The I_{DD} values must be derated (increased) when operated outside of the range 0°C \leq T_C \leq 85°C: When T_C < 0°C: I_{DD2P}, and I_{DD3P} must be derated by +6%; I_{DD4R} and I_{DD4W} must be derated by +4%; I_{DD6}, I_{DD6ET}, and I_{DD7} must be derated by +11%.

When $T_C > 85^{\circ}$ C: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , and I_{DD4W} must be derated by +3%; I_{DD2P} must be derated by +40%; and I_{DD5R} and I_{PP5R} must be derated by +40%. These values are verified by design and characterization, and may not be subject to production test.

25. I_{PP6x} is applicable to I_{DD6N} , I_{DD6E} , I_{DD6R} and I_{DD6A} conditions.

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDDO: One bank ACTI-	x4	37	39	41	43	45	mA
VATE-to-PRECHARGE cur-	x8	39	41	43	45	47	mA
rent	x16	46	48	50	52	54	mA
IPP0: One bank ACTI-	x4, x8	3	3	3	3	3	mA
VATE-to-PRECHARGE I _{PP} current	x16	4	4	4	4	4	mA
IDD1: One bank ACTI-	x4	50	52	54	56	58	mA
VATE-to-READ-to- PRE- CHARGE current	x8	55	57	59	61	63	mA
CHARGE Current	x16	72	74	76	78	80	mA
I _{DD2N} : Precharge standby current	ALL	29	30	31	32	33	mA
IDD2NT: Precharge standby	x4, x8	36	38	40	42	44	mA
ODT current	x16	43	46	49	52	55	mA
I _{DD2P} : Precharge power-down current	ALL	22	22	22	22	22	mA
I_{DD2Q}: Precharge quiet standby current	ALL	26	26	26	26	26	mA

Table 151: I_{DD} , I_{PP} , and I_{DDO} Current Limits; Die Rev. E (-40° \leq T_C \leq 85°C)

Table 151: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. E (-40° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDD3N: Active standby cur-	x4	34	36	38	40	42	mA
rent	x8	35	37	39	41	43	mA
	x16	36	38	40	42	44	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x4	28	29	30	31	32	mA
current	x8	29	30	31	32	33	mA
	x16	30	31	32	33	34	mA
IDD4R: Burst read current	x4	110	120	131	142	153	mA
	x8	135	145	156	167	178	mA
	x16	235	253	273	293	312	mA
IDD4W: Burst write current	x4	96	105	114	123	132	mA
	x8	114	123	132	141	150	mA
	x16	182	199	216	233	250	mA
I _{DD5R} : Distributed refresh current (1X REF)	ALL	46	47	48	49	50	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA
I _{DD6N} : Self refresh current; -40–85°C ¹	ALL	34	34	34	34	34	mA
I_{DD6E} : Self refresh current; -40–95°C ^{2, 4}	ALL	58	58	58	58	58	mA
I_{DD6R}: Self refresh current; -40–45°C ^{3, 4}	ALL	21	21	21	21	21	mA
I_{DD6A} : Auto self refresh cur- rent (25°C) ⁴	ALL	8.6	8.6	8.6	8.6	8.6	mA
I_{DD6A}: Auto self refresh cur- rent (45°C) ⁴	ALL	21	21	21	21	21	mA
I_{DD6A}: Auto self refresh cur- rent (75°C) ⁴	ALL	31	31	31	31	31	mA
I_{DD6A}: Auto self refresh cur- rent (95°C) ⁴	ALL	58	58	58	58	58	mA
I_{PP6x}: Auto self refresh I _{PP} current; -40–95°C ²⁶	ALL	5	5	5	5	5	mA
IDD7: Bank interleave read	x4	175	185	200	215	230	mA
current	x8	170	175	180	185	190	mA
	x16	234	243	252	261	270	mA

Table 151: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. E (-40° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
l _{PP7} : Bank interleave read	x4	14	14	14	14	14	mA
I _{PP} current	x8	13	13	13	13	13	mA
	x16	18	18	18	18	18	mA
l _{DD8} : Maximum power-down current	ALL	18	18	18	18	18	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (-40–85°C).

2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (-40–95°C).

- 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (-40–45°C).
- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, Values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0} , current changes by approximately +1%.
- 6. When additive latency is enabled for I_{DD1} , current changes by approximately +8%(x4/x8), +7%(x16).
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately +1%.
- 8. When DLL is disabled for I_{DD2N} , current changes by approximately -6%.
- 9. When CAL is enabled for I_{DD2N}, current changes by approximately –30%.
- 10. When gear-down is enabled for I_{DD2N} , current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +10%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R}, current changes by approximately +4%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately -14%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately -5%.
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12%.
- 19. When 2X REF is enabled for I_{DD5R}, current changes by approximately +0%.
- 20. When 4X REF is enabled for I_{DD5R}, current changes by approximately +0%.
- 21. When 2X REF is enabled for I_{PP5R} , current changes by approximately +0%.
- 22. When 4X REF is enabled for I_{PP5R} , current changes by approximately +0%.
- 23. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 24. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 25. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
- 26. The I_{DD} values must be derated (increased) when operating between 85°C < T_C ≤ 95°C: I_{DD0}, I_{DD1}, I_{DD2N}, I_{DD2N}, I_{DD2N}, I_{DD2Q}, I_{DD3N}, I_{DD3P}, I_{DD4R}, and I_{DD4W} must be derated by +3%; I_{DD2P} must be derated by +10%; and I_{DD5R} and I_{PP5R} must be derated by +43%; All I_{PP} currents except I_{PP6x} and I_{PP5R} must be derated by +0%. These values are verified by design and characterization, and may not be subject to production test.
- 27. I_{PP6x} is applicable to I_{DD6N}, I_{DD6E}, I_{DD6R} and I_{DD6A} conditions.

Table 152: I_{DD}, I_{PP}, and I_{DDQ} Current Limits; Die Rev. E (-40° \leq T_C \leq 105°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDDO: One bank ACTI-	x8	43	45	47	49	51	mA
VATE-to-PRECHARGE cur- rent	x16	50	52	54	56	58	mA

8Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits

Table 152: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. E (-40° \leq T_C \leq 105°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IPP0: One bank ACTI-	x8	3	3	3	3	3	mA
VATE-to-PRECHARGE I _{PP} current	x16	4	4	4	4	4	mA
l _{DD1} : One bank ACTI-	x8	59	61	63	65	67	mA
VATE-to-READ-to- PRE- CHARGE current	x16	77	79	81	83	85	mA
I _{DD2N} : Precharge standby current	ALL	32	33	34	35	36	mA
IDD2NT: Precharge standby	x8	40	42	44	46	48	mA
ODT current	x16	47	49	53	56	59	mA
I_{DD2P}: Precharge power-down current	ALL	26	26	26	26	26	mA
I_{DD2Q}: Precharge quiet standby current	ALL	29	29	29	29	29	mA
IDD3N: Active standby cur-	x8	39	41	43	45	47	mA
rent	x16	40	42	44	46	48	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x8	33	34	35	36	37	mA
current	x16	34	35	36	37	38	mA
I _{DD4R} : Burst read current	x8	145	155	166	178	189	mA
	x16	247	265	292	306	326	mA
IDD4W: Burst write current	x8	123	132	141	151	160	mA
	x16	193	210	228	245	263	mA
I_{DD5R}: Distributed refresh current (1X REF)	ALL	96	97	98	99	100	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA
I_{DD6N}: Self refresh current; -40–85°C ¹	ALL	34	34	34	34	34	mA
I _{DD6E} : Self refresh current; -40–105°C ^{2, 4}	ALL	95	95	95	95	95	mA
I_{DD6R}: Self refresh current; -40–45°C ^{3, 4}	ALL	21	21	21	21	21	mA
I _{DD6A} : Auto self refresh cur- rent (25°C) ⁴	ALL	8.6	8.6	8.6	8.6	8.6	mA
I_{DD6A} : Auto self refresh current (45°C) ⁴	ALL	21	21	21	21	21	mA
I_{DD6A}: Auto self refresh cur- rent (75°C) ⁴	ALL	31	31	31	31	31	mA

Table 152: I_{DD}, I_{PP}, and I_{DDQ} Current Limits; Die Rev. E (-40° \leq T_C \leq 105°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
I_{DD6A}: Auto self refresh current (105°C) ⁴	ALL	95	95	95	95	95	mA
I_{PP6x}: Auto self refresh I _{PP} current; -40–105°C ²⁶	ALL	6	6	6	6	6	mA
IDD7: Bank interleave read	x8	175	180	185	190	195	mA
current	x16	239	248	257	266	275	mA
IPP7: Bank interleave read	x8	13	13	13	13	13	mA
I _{PP} current	x16	18	18	18	18	18	mA
l _{DD8} : Maximum power-down current	ALL	20	20	20	20	20	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (-40-85°C).

- 2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (-40–105°C).
- 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (-40–45°C).
- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, I_{DD6A} values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0}, current changes by approximately +1%.
- 6. When additive latency is enabled for I_{DD1}, current changes by approximately +8%(x4/x8), +7%(x16).
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately +1%.
- 8. When DLL is disabled for I_{DD2N}, current changes by approximately -6%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately –30%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +10%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R}, current changes by approximately +4%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately -14%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately -5%.
- 18. When CA parity is enabled for I_{DD4W} , current changes by approximately +12%.
- 19. When 2X REF is enabled for I_{DD5R} , current changes by approximately +0%.
- 20. When 4X REF is enabled for I_{DD5R}, current changes by approximately +0%.
- 21. When 2X REF is enabled for I_{PP5R} , current changes by approximately +0%.
- 22. When 4X REF is enabled for IPP5R, current changes by approximately +0%.
- 23. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 24. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 25. DDR4-1600 and DDR4-1866 use the same $I_{\mbox{\scriptsize DD}}$ limits as DDR4-2133.

26. I_{PP6x} is applicable to $I_{DD6N},\,I_{DD6E},\,I_{DD6R}$ and I_{DD6A} conditions.

Table 153: I_{DD}, I_{PP}, and I_{DDQ} Current Limits; Die Rev. G (0° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
I DD0: One bank ACTI- VATE-to-PRECHARGE cur- rent	x4	40	43	46	49	52	mA
	x8	45	48	51	54	57	mA
	x16	75	80	85	90	95	mA
IPP0: One bank ACTI-	x4, x8	3	3	3	3	3	mA
VATE-to-PRECHARGE I _{PP} current	x16	4	4	4	4	4	mA
IDD1: One bank ACTI- VATE-to-READ-to- PRE- CHARGE current	x4	52	55	58	61	64	mA
	x8	57	60	63	66	69	mA
	x16	95	100	105	110	115	mA
I_{DD2N}: Precharge standby current	ALL	33	34	35	36	37	mA
I_{DD2NT}: Precharge standby ODT current	x4, x8	45	50	50	55	60	mA
	x16	67	75	75	78	81	mA
I_{DD2P}: Precharge power-down current	ALL	25	25	25	25	25	mA
I_{DD2Q}: Precharge quiet standby current	ALL	30	30	30	30	30	mA
I _{DD3N} : Active standby cur- rent	x4	40	43	46	49	52	mA
	x8	45	48	51	54	56	mA
	x16	49	52	55	58	61	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x4	30	32	34	36	38	mA
current	x8	35	37	39	41	43	mA
	x16	39	41	43	45	47	mA
I _{DD4R} : Burst read current	x4	100	110	121	132	143	mA
	x8	125	135	146	157	168	mA
	x16	225	243	263	283	302	mA
IDD4W: Burst write current	x4	100	108	117	126	135	mA
	x8	120	128	137	146	155	mA
	x16	218	233	249	266	283	mA
I_{DD5R}: Distributed refresh current (1X REF)	x4, x8	56	58	61	64	66	mA
	x16	61	64	67	69	72	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA
I_{DDGN}: Self refresh current; 0–85°C ¹	ALL	31	31	31	31	31	mA

Table 153: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. G ($0^{\circ} \le T_C \le 85^{\circ}$ C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
I_{DD6E} : Self refresh current; 0–95°C ^{2, 4}	ALL	36	36	36	36	36	mA
I_{DD6R}: Self refresh current; 0–45C ^{3, 4}	ALL	21	21	21	21	21	mA
I_{DD6A} : Auto self refresh current (25°C) ⁴	ALL	8.6	8.6	8.6	8.6	8.6	mA
I_{DD6A}: Auto self refresh current (45°C) ⁴	ALL	21	21	21	21	21	mA
I_{DD6A}: Auto self refresh cur- rent (75°C) ⁴	ALL	31	31	31	31	31	mA
І_{РРбх}: Auto self refresh І _{РР} current; 0–95°С ²⁵	ALL	5	5	5	5	5	mA
I_{DD7}: Bank interleave read current	x4	175	185	200	215	230	mA
	x8	170	175	180	185	190	mA
	x16	239	249	259	269	279	mA
I_{PP7}: Bank interleave read I _{PP} current	x4	16	17	18	19	20	mA
	x8	15	15	15	15	15	mA
	x16	20	20	20	20	20	mA
I_{DD8}: Maximum power-down current	ALL	25	25	25	25	25	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation $(0-85^{\circ}C)$.

- 2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
- 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (0–45°C).
- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0}, current changes by approximately 0%.
- 6. When additive latency is enabled for I_{DD1}, current changes by approximately +5%(x4/x8), +4%(x16).
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately 0%.
- 8. When DLL is disabled for I_{DD2N} , current changes by approximately -23%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately –25%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N}, current changes by approximately +7%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R} , current changes by approximately 0%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W}, current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately +10%(x4/x8), +10%(x16).
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12% (x8), +12% (x16).
- 19. When 2X REF is enabled for I_{DD5R} , current changes by approximately –14%.
- 20. When 4X REF is enabled for I_{DD5R} , current changes by approximately –33%.

- 21. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 22. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 23. DDR4-1600 and DDR4-1866 use the same $I_{\mbox{\scriptsize DD}}$ limits as DDR4-2133.
- 24. The I_{DD} values must be derated (increased) when operated outside of the range $0^{\circ}C \le T_C \le 85^{\circ}C$:

When $T_C < 0^{\circ}$ C: I_{DD2P} , and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by 4%; I_{DD6} , I_{DD6ET} , and I_{DD7} must be derated by 11%.

When $T_C > 85^{\circ}$ C: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by 3%; I_{DD2P} must be derated by 40%. These values are verified by design and characterization, and may not be subject to production test.

25. I_{PP6x} is applicable to $I_{\text{DD6N}},\,I_{\text{DD6E}},\,I_{\text{DD6R}}$ and I_{DD6A} conditions.

Table 154: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. H (0° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
I_{DDO}: One bank ACTI- VATE-to-PRECHARGE cur- rent	x4	55	55	57	60	na	mA
	x8	55	55	60	61	na	mA
	x16	75	75	80	83	na	mA
I_{PP0}: One bank ACTI- VATE-to-PRECHARGE I _{PP} current	x4, x8	3	3	3	3	na	mA
	x16	5	5	5	5	na	mA
IDD1: One bank ACTI-	x4	68	68	71	75	na	mA
VATE-to-READ-to- PRE- CHARGE current	x8	68	68	73	75	na	mA
	x16	100	100	107	111	na	mA
I _{DD2N} : Precharge standby current	ALL	39	39	42	43	na	mA
I _{DD2NT} : Precharge standby ODT current	x4, x8	43	43	48	50	na	mA
	x16	47	47	50	54	na	mA
I _{DD2P} : Precharge power-down current	ALL	27	27	27	27	na	mA
I _{DD2Q} : Precharge quiet standby current	ALL	34	34	36	36	na	mA
I _{DD3N} : Active standby cur- rent	x4	46	47	49	52	na	mA
	x8	46	47	49	52	na	mA
	x16	46	47	50	53	na	mA
I _{PP3N} : Active standby I _{PP} current	ALL	4.5	4.5	4.5	4.5	na	mA
I _{DD3P} : Active power-down current	x4	34	34	34	37	na	mA
	x8	36	36	39	40	na	mA
	x16	37	37	40	42	na	mA
I _{DD4R} : Burst read current	x4	135	135	157	173	na	mA
	x8	147	147	174	188	na	mA
	x16	259	259	312	341	na	mA

Table 154: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. H ($0^{\circ} \le T_C \le 85^{\circ}C$)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDD4W: Burst write current	x4	163	163	192	210	na	mA
	x8	181	181	217	234	na	mA
	x16	298	298	359	392	na	mA
IDD5R: Distributed refresh	x4	49	49	51	53	na	mA
current (1X REF)	x8	49	49	51	53	na	mA
	x16	49	49	52	54	na	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5.5	5.5	5.5	5.5	na	mA
I_{DD6N}: Self refresh current; 0–85°C ¹	ALL	36	36	36	36	na	mA
IDD6E: Self refresh current;	x4, x8	48	48	49	49	na	mA
0–95°C ^{2, 4}	x16	50	50	50	51	na	mA
I_{DD6R}: Self refresh current; 0–45C ^{3, 4}	ALL	26	26	26	26	na	mA
I_{DD6A}: Auto self refresh cur- rent (25°C) ⁴	ALL	15	15	15	15	na	mA
I_{DD6A}: Auto self refresh cur- rent (45°C) ⁴	ALL	26	26	26	26	na	mA
I_{DD6A}: Auto self refresh cur- rent (75°C) ⁴	ALL	36	36	36	36	na	mA
I_{PP6x}: Auto self refresh I _{PP} current; 0–95°C ²⁵	ALL	5	5	5	5	na	mA
IDD7: Bank interleave read	x4	278	278	388	369	na	mA
current	x8	228	228	240	244	na	mA
	x16	311	311	321	331	na	mA
IPP7: Bank interleave read	x4	21	21	26	28	na	mA
I _{PP} current	x8	16	16	16	16	na	mA
	x16	22	22	22	22	na	mA
I_{DD8}: Maximum power-down current	ALL	21	21	21	21	na	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation $(0-85^{\circ}C)$.

- 2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
- 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation $(0-45^{\circ}C)$.
- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0}, current changes by approximately 0%.
- 6. When additive latency is enabled for I_{DD1} , current changes by approximately +5%(x4/x8), +4%(x16).
- 7. When additive latency is enabled for I_{DD2N} , current changes by approximately 0%.

8Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits

- 8. When DLL is disabled for I_{DD2N} , current changes by approximately -5%.
- 9. When CAL is enabled for I_{DD2N}, current changes by approximately –25%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +7%.
- 12. When additive latency is enabled for I_{DD3N} , current changes by approximately +1%.
- 13. When additive latency is enabled for I_{DD4R}, current changes by approximately +5%.
- 14. When read DBI is enabled for I_{DD4R} , current changes by approximately 0%.
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +3%(x4/x8), +4%(x16).
- 16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately +10%(x4/x8), +10%(x16).
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12% (x8), +12% (x16).
- 19. When 2X REF is enabled for I_{DD5R}, current changes by approximately –14%.
- 20. When 4X REF is enabled for I_{DD5R}, current changes by approximately –33%.
- 21. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 22. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 23. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
- 24. The I_{DD} values must be derated (increased) when operated outside of the range $0^{\circ}C \le T_{C} \le 85^{\circ}C$:
 - When $T_C < 0^{\circ}$ C: I_{DD2P} , and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by 4%; I_{DD6} , I_{DD6ET} , and I_{DD7} must be derated by 11%.
 - When $T_C > 85^{\circ}C$: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by 3%; I_{DD2P} must be derated by 40%. These values are verified by design and characterization, and may not be subject to production test.
- 25. I_{PP6x} is applicable to $I_{\text{DD6N}},\,I_{\text{DD6E}},\,I_{\text{DD6R}}$ and I_{DD6A} conditions.

Symbol Width DDR4-2133 **DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200** Unit IDD0: One bank ACTIx4 35 37 39 41 43 mΑ VATE-to-PRECHARGE curx8 37 39 41 43 44 mA rent x16 44 46 48 50 52 mA IPPO: One bank ACTIx4, x8 3 3 3 3 3 mΑ VATE-to-PRECHARGE IPP x16 4 4 4 4 4 mA current IDD1: One bank ACTI-48 50 51 53 55 x4 mΑ VATE-to-READ-to- PREx8 52 54 56 58 60 mΑ CHARGE current 68 70 72 74 76 x16 mΑ ALL 29 30 30 31 IDD2N: Precharge standby 28 mΑ current Precharge standby 34 38 40 42 x4, x8 36 mΑ **ODT** current 41 44 47 50 53 x16 mΑ ALL 22 22 22 22 22 IDD2P: Precharge mΑ power-down current ALL 26 26 26 26 26 IDD20: Precharge quiet mΑ standby current

Table 155: I_{DD} , I_{PP} , and I_{DDO} Current Limits; Die Rev. J (-40° \leq T_C \leq 85°C)

Table 155: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. J (-40° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDD3N: Active standby cur-	x4	34	36	38	40	42	mA
rent	x8	35	37	39	41	43	mA
	x16	36	38	40	42	44	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x4	28	29	30	31	32	mA
current	x8	29	30	31	32	33	mA
	x16	30	31	32	33	34	mA
IDD4R: Burst read current	x4	105	114	125	135	145	mA
	x8	128	138	148	158	169	mA
	x16	223	240	260	278	296	mA
IDD4W: Burst write current	x4	91	100	108	117	126	mA
	x8	108	116	125	134	142	mA
	x16	173	189	205	221	238	mA
I_{DD5R}: Distributed refresh current (1X REF)	ALL	44	45	45	46	47	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA
I _{DD6N} : Self refresh current; -40–85°C ¹	ALL	32	32	32	32	32	mA
I_{DD6E} : Self refresh current; -40–95°C ^{2, 4}	ALL	55	55	55	55	55	mA
I_{DD6R}: Self refresh current; -40–45°C ^{3, 4}	ALL	20	20	20	20	20	mA
I_{DD6A} : Auto self refresh current (25°C) ⁴	ALL	8.2	8.2	8.2	8.2	8.2	mA
I_{DD6A}: Auto self refresh cur- rent (45°C) ⁴	ALL	20	20	20	20	20	mA
I_{DD6A}: Auto self refresh cur- rent (75°C) ⁴	ALL	30	30	30	30	30	mA
I_{DD6A} : Auto self refresh current (95°C) ⁴	ALL	55	55	55	55	55	mA
Ipp6x: Auto self refresh Ipp current; -40–95°C ²⁷	ALL	5	5	5	5	5	mA
IDD7: Bank interleave read	x4	166	176	190	205	219	mA
current	x8	161	166	171	175	180	mA
	x16	222	231	240	248	257	mA

Table 155: I_{DD}, I_{PP}, and I_{DDO} Current Limits; Die Rev. J (-40° ≤ T_C ≤ 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
l _{PP7} : Bank interleave read	x4	11	11	11	11	11	mA
I _{PP} current	x8	10	10	10	10	13	mA
	x16	15	15	15	15	15	mA
I_{DD8}: Maximum power-down current	ALL	18	18	18	18	18	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (-40–85°C).

2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (-40–95°C).

- 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (-40–45°C).
- 4. I_{DD6E}, I_{DD6R}, I_{DD6R}, Values are verified by design and characterization, and may not be subject to production test.
- 5. When additive latency is enabled for I_{DD0} , current changes by approximately +1%.
- 6. When additive latency is enabled for I_{DD1} , current changes by approximately +8%(x4/x8), +7%(x16).
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately +1%.
- 8. When DLL is disabled for I_{DD2N} , current changes by approximately -6%.
- 9. When CAL is enabled for I_{DD2N} , current changes by approximately -20%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +13%.
- 12. When additive latency is enabled for I_{DD3N} , current changes by approximately +2%.
- 13. When additive latency is enabled for I_{DD4R} , current changes by approximately +4(x4/x8), +3%(x16).
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately -14% (x4/x8), -20% (x16).
- 15. When additive latency is enabled for I_{DD4W} , current changes by approximately +4%(x4/x8), +3%(x16).
- 16. When write DBI is enabled for I_{DD4W}, current changes by approximately 0%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately -5%.
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +12%.
- 19. When 2X REF is enabled for I_{DD5R}, current changes by approximately +0%.
- 20. When 4X REF is enabled for I_{DD5R}, current changes by approximately +0%.
- 21. When 2X REF is enabled for I_{PP5R} , current changes by approximately +0%.
- 22. When 4X REF is enabled for I_{PP5R} , current changes by approximately +0%.
- 23. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 24. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 25. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
- 26. The I_{DD} values must be derated (increased) when operating between 85°C < T_C ≤ 95°C: I_{DD0}, I_{DD1}, I_{DD2N}, I_{DD2N7}, I_{DD2Q}, I_{DD3N}, I_{DD3P}, I_{DD4R}, and I_{DD4W}, must be derated by +3%; I_{DD2P} must be derated by +13%; I_{DD5R} and I_{PP5R} must be derated by +43%; All I_{PP} currents except I_{PP6x} and I_{PP5R} must be derated by +0%. These values are verified by design and characterization, and may not be subject to production test.
- 27. I_{PP6x} is applicable to I_{DD6N}, I_{DD6E}, I_{DD6R} and I_{DD6A} conditions.

Table 156: I_{DD}, I_{PP}, and I_{DDQ} Current Limits; Die Rev. R (-40° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IDDO: One bank ACTI-	x4	38	40	42	44	46	mA
VATE-to-PRECHARGE cur- rent	x8	40	42	44	46	48	mA
	x16	51	53	55	57	59	mA

Table 156: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. R (-40° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
IPP0: One bank ACTI-	x4, x8	4	4	4	4	4	mA
VATE-to-PRECHARGE I _{PP} current	x16	5	5	5	5	5	mA
IDD1: One bank ACTI-	x4	43	45	47	49	51	mA
VATE-to-READ-to- PRE-	x8	47	49	51	53	55	mA
CHARGE current	x16	61	63	65	67	69	mA
I _{DD2N} : Precharge standby current	ALL	34	35	36	37	38	mA
IDD2NT: Precharge standby	x4, x8	33	35	37	39	41	mA
ODT current	x16	38	40	42	44	46	mA
I _{DD2P} : Precharge power-down current	ALL	30	30	30	30	30	mA
I _{DD2Q} : Precharge quiet standby current	ALL	34	34	34	34	34	mA
IDD3N: Active standby cur-	x4	34	36	38	40	42	mA
rent	x8	35	37	39	41	43	mA
	x16	36	38	40	42	44	mA
I _{PP3N} : Active standby I _{PP} current	ALL	3	3	3	3	3	mA
IDD3P: Active power-down	x4	28	29	30	31	32	mA
current	x8	29	30	31	32	33	mA
	x16	30	31	32	33	34	mA
IDD4R: Burst read current	x4	74	80	88	95	103	mA
	x8	92	98	105	113	123	mA
	x16	130	139	151	164	176	mA
IDD4W: Burst write current	x4	62	66	70	76	82	mA
	x8	79	85	91	98	106	mA
	x16	102	109	119	127	138	mA
I _{DD5R} : Distributed refresh current (1X REF)	ALL	44	45	45	46	47	mA
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	ALL	5	5	5	5	5	mA
I_{DD6N}: Self refresh current; -40–85°C ¹	ALL	32	32	32	32	32	mA
I_{DD6E}: Self refresh current; -40–95°C ^{2, 4}	ALL	52	52	52	52	52	mA
I_{DD6R}: Self refresh current; -40–45°C ^{3, 4}	ALL	19	19	19	19	19	mA

Table 156: I_{DD} , I_{PP} , and I_{DDQ} Current Limits; Die Rev. R (-40° \leq T_C \leq 85°C)

Symbol	Width	DDR4-2133	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit
I_{DD6A}: Auto self refresh cur- rent (25°C) ⁴	ALL	8	8	8	8	8	mA
I_{DD6A}: Auto self refresh current (45°C) ⁴	ALL	19	19	19	19	19	mA
I_{DD6A}: Auto self refresh cur- rent (75°C) ⁴	ALL	29	29	29	29	29	mA
I_{DD6A}: Auto self refresh cur- rent (95°C) ⁴	ALL	52	52	52	52	52	mA
І_{РРбх}: Auto self refresh I _{PP} current; -40–95°С ²⁷	ALL	5	5	5	5	5	mA
IDD7: Bank interleave read	x4	154	169	186	200	215	mA
current	x8	135	140	145	150	155	mA
	x16	165	179	196	210	225	mA
I _{PP7} : Bank interleave read	x4	13	13	13	13	13	mA
I _{PP} current	x8	8	8	8	8	8	mA
	x16	13	13	13	13	13	mA
I _{DD8} : Maximum power-down current	ALL	24	24	24	24	24	mA
IDD9: MBIST-PPR current	ALL	170	170	170	170	170	mA
I_{PP9}: MBIST-PPR I _{PP} current	ALL	13	13	13	13	13	mA

Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (-40–85°C).

2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (-40–95°C).

3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (-40–45°C).

4. I_{DD6E}, I_{DD6R}, I_{DD6R}, Values are verified by design and characterization, and may not be subject to production test.

- 5. When additive latency is enabled for I_{DD0} , current changes by approximately +1%.
- 6. When additive latency is enabled for I_{DD1} , current changes by approximately +5%.
- 7. When additive latency is enabled for I_{DD2N}, current changes by approximately 2%.
- 8. When DLL is disabled for I_{DD2N} , current changes by approximately +19%.
- 9. When CAL is enabled for I_{DD2N}, current changes by approximately -20%.
- 10. When gear-down is enabled for I_{DD2N}, current changes by approximately +2%.
- 11. When CA parity is enabled for I_{DD2N} , current changes by approximately +10%.
- 12. When additive latency is enabled for I_{DD3N}, current changes by approximately -2%.
- 13. When additive latency is enabled for I_{DD4R}, current changes by approximately +4%.
- 14. When read DBI is enabled for I_{DD4R}, current changes by approximately -14%
- 15. When additive latency is enabled for I_{DD4W}, current changes by approximately +6%.
- 16. When write DBI is enabled for I_{DD4W} , current changes by approximately +1%.
- 17. When write CRC is enabled for I_{DD4W}, current changes by approximately -5%.
- 18. When CA parity is enabled for I_{DD4W}, current changes by approximately +14%.
- 19. When 2X REF is enabled for I_{DD5R}, current changes by approximately 0%.

- 20. When 4X REF is enabled for $I_{\mbox{DD5R}},$ current changes by approximately 0%.
- 21. When 2X REF is enabled for $I_{\mbox{PP5R}}$, current changes by approximately 0%.
- 22. When 4X REF is enabled for $I_{\mbox{PP5R}}$, current changes by approximately 0%.
- 23. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
- 24. I_{PP3N} test and limit is applicable for all I_{DD2x}, I_{DD3x}, I_{DD4x} and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP}s for the noted I_{DD} tests.
- 25. DDR4-1600 and DDR4-1866 use the same $I_{\mbox{DD}}$ limits as DDR4-2133.
- 26. The I_{DD} values must be derated (increased) when operating between 85°C < $T_C \le 95°C$: I_{DD0}, I_{DD1}, I_{DD2N}, I_{DD2P}, I_{DD2N}, I_{DD3P}, I_{DD4R}, and I_{DD4W}, must be derated by +10%. I_{DD5R} and I_{PP5R} must be derated by +43%; I_{PP0} must be derated by +13%. I_{PP3N} must be derated by +22%. I_{PP7} must be derated by +3%. These values are verified by design and characterization, and may not be subject to production test.
- 27. I_{PP6x} is applicable to I_{DD6N} , I_{DD6E} , I_{DD6R} and I_{DD6A} conditions.

Speed Bin Tables

DDR4 DRAM timing is primarily covered by two types of tables: the Speed Bin tables in this section and the tables found in the Electrical Characteristics and AC Timing Parameters section. The timing parameter tables define the applicable timing specifications based on the speed rating. The Speed Bin tables on the following pages list the ^tAA, ^tRCD, ^tRP, ^tRAS, and ^tRC limits of a given speed mark and are applicable to the CL settings in the lower half of the table provided they are applied in the correct clock range, which is noted.

Backward Compatibility

Although the speed bin tables list the slower data rates, ^tAA, CL, and CWL, it is difficult to determine whether a faster speed bin supports all of the ^tAA, CL, and CWL combinations across all the data rates of a slower speed bin. To assist in this process, please refer to the Backward Compatibility table.

Table 157: Backward Compatibility

Note 1 applies to the entire table.

¥	Speed Bin Supported																	
Component Speed Bin	-125	-125E	-107	-107E	-093	-093E	-083D	-083	-083E	-075D	-075	-075E	-068D	-068	-068E	-062	-062E	-062Y
-125	yes																	
-125E	yes ²	yes																
-107	yes		yes															
-107E	yes ²	yes	yes ²	yes														
-093	yes		yes		yes													
-093E	yes ²	yes	yes ²	yes	yes ²	yes												
-083D	yes		yes		yes		yes											
-083	yes		yes		yes		yes	yes										
-083E	yes ²	yes	yes ²	yes	yes ²	yes	yes ²	yes ²	yes									
-075D	yes		yes		yes		yes			yes								
-075	yes		yes		yes		yes	yes		yes	yes							
-075E	yes	yes	yes	yes	yes	yes	yes	yes		yes	yes	yes						
-068D	yes		yes		yes		yes			yes			yes					
-068	yes		yes		yes		yes	yes		yes	yes		yes	yes				
-068E	yes		yes		yes		yes	yes		yes	yes		yes	yes	yes			
-062	yes		yes		yes		yes			yes			yes			yes		
-062E	yes		yes		yes		yes	yes		yes	yes		yes	yes		yes	yes	
-062Y	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes		yes	yes	yes

Notes: 1. The backward compatibility table is not meant to guarantee that any new device will be a drop in replacement for an existing part number.

2. This condition exceeds the JEDEC requirement in order to allow additional flexibility for components. However, JEDEC SPD compliance may

Customers should review the operating conditions for any device to determine its suitability for use in their design.

force modules to only support the JEDEC-defined value. Refer to the SPD documentation for further clarification.

345

CCMTD-1725822587-9875 8gb_ddr4_dram.pdf - Rev. T 09/2021 EN

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

Table 158: DDR4-1600 Speed Bins and Operating Conditions

Notes 1–3 apply to the entire table

DDR4-1600 Sp	peed Bin						-1	25E	-1	125	
CL-nRCD-nRP							11-1	11-11	12-1	12-12	
Parameter						Symbol	Min	Мах	Min	Мах	Unit
Internal READ o	command to firs	t data				^t AA	13.75 (13.50) ⁴	19.00 ⁶	15.00	19.00 ⁶	ns
Internal READ o	command to firs	t data with read [OBI enabled			^t AA_DBI	^t AA (MIN) + 2nCK	^t AA (MAX) + 2nCK	^t AA (MIN) + 2nCK	^t AA (MAX) + 2nCK	ns
ACTIVATE-to-ir	nternal READ or	WRITE delay time	e			^t RCD	13.75 (13.50) ⁴	-	15.00	-	ns
PRECHARGE cc	ommand period					^t RP	13.75 (13.50) ⁴	-	15.00	-	ns
ACTIVATE-to-P	PRECHARGE com	mand period				^t RAS	35	9 × ^t REFI	35	9 × ^t REFI	ns
ACTIVATE-to-A	ACTIVATE or REF	RESH command p	veriod			^t RC ⁵	^t RAS + ^t RP	-	^t RAS + ^t RP	-	ns
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin(ns): non-DB	READ CL: nonDBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Мах	Unit
1333	-	13.50	9	11	9	^t CK (AVG)	1.500	1.900 ⁶	Rese	erved	ns
	-	15.00	10	12	1	^t CK (AVG)	1.500 ⁶	1.900 ⁶	1.500	1.900 ⁶	ns
1600	-125E	13.75	11	13	9, 11	^t CK (AVG)	1.250	<1.500	Rese	erved	ns
	-125	15.00	12	14	1	^t CK (AVG)	1		1.250	<1.500	ns
Supported CL se	ettings	_		<u>.</u>			9, 10 ⁶	, 11-12	10	, 12	nCK
Supported CL s	settings with read	d DBI					11, 12 ⁶	⁶ , 13-14	12,	, 14	nCK
Supported CWL	l settings						9	11	9	11	nCK

Notes: 1. Speed Bin table is only valid with DLL enabled.

2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

CCMTD-1725822587-9875 8gb_ddr4_dram.pdf - Rev. T 09/2021 EN

- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ^tCK-CL-*n*RCD-*n*RP combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

Table 159: DDR4-1866 Speed Bins and Operating Conditions

DDR4-1866 S	peed Bin						-1	07E	-1	07	
CL-nRCD-nRP)						13-1	3-13	14-1	14-14	1
Parameter						Symbol	Min	Мах	Min	Мах	Un
Internal READ	command to firs	t data				^t AA	13.92 (13.50) ⁴	19.00 ⁶	15.00	19.00 ⁶	n
Internal READ	command to firs	t data with read	DBI enabled			^t AA_DBI	^t AA (MIN) + 2 <i>n</i> CK	^t AA (MAX) + 2nCK	^t AA (MIN) + 2 <i>n</i> CK	^t AA (MAX) + 2nCK	n
ACTIVATE to i	internal READ or	WRITE delay tim	e			^t RCD	13.92 (13.50) ⁴	-	15.00	-	n
PRECHARGE c	ommand period					^t RP	13.92 (13.50) ⁴	-	15.00	-	n
ACTIVATE-to-	PRECHARGE com	^t RAS	34	9 × ^t REFI	34	9 × ^t REFI	n				
ACTIVATE-to-	ACTIVATE or REF	RESH command	period			^t RC ⁵	^t RAS + ^t RP	_	^t RAS + ^t RP	_	n
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin: nonDBI	READ CL: nonDBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Max	Uni
1333	-	13.50	9	11	9	^t CK (AVG)	1.500	1.900 ⁶	Rese	erved	n
	-	15.00	10	12		^t CK (AVG)	1.500 ⁶	1.900 ⁶	1.500	1.900 ⁶	ns
1600	-125E	13.75	11	13	9, 11	^t CK (AVG)	1.250	<1.500	Rese	rved	n
	-125	15.00	12	14		^t CK (AVG)			1.250	<1.500	ns
1866	-107E	13.92	13	15	10, 12	^t CK (AVG)	1.071	<1.250	Rese	erved	n
	-107	15.00	14	16	1	^t CK (AVG)			1.071	<1.250	ns
Supported CL	settings	1					9, 10 ⁶ ,	11–14	10, 1	2, 14	nC
Supported CL	settings with rea	ad DBI					11, 12 ⁶	, 13–16	12, 1	4, 16	nC
	VL settings					9–12 9–12			4.2	nC	

Notes: 1. Speed Bin table is only valid with DLL enabled.

2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.

- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ^tCK-CL-*n*RCD-*n*RP combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

Table 160: DDR4-2133 Speed Bins and Operating Conditions

DDR4-2133 S	peed Bin						-0	93E	-0	93	
CL-nRCD-nRP							15- 1	15-15	16- 1	16-16	
Parameter						Symbol	Min	Мах	Min	Мах	Un
Internal READ o	command to firs	t data				^t AA	14.06 (13.50) ⁴	19.00 ⁶	15.00	19.00 ⁶	n
Internal READ	command to firs	t data with read D	BI enabled			^t AA_DBI	^t AA (MIN) + 3 <i>n</i> CK	^t AA (MAX) + 3nCK	^t AA (MIN) + 3 <i>n</i> CK	^t AA (MAX) + 3 <i>n</i> CK	n
ACTIVATE to in	nternal READ or	WRITE delay time				^t RCD	14.06 (13.50) ⁴	_	15.00	-	n
PRECHARGE co	ommand period					^t RP	14.06 (13.50) ⁴	_	15.00	-	n
ACTIVATE-to-P	RECHARGE com	mand period				^t RAS	33	9 × ^t REFI	33	9 × ^t REFI	n
ACTIVATE-to-ACTIVATE or REFRESH command period						^t RC ⁵	^t RAS + ^t RP	_	^t RAS + ^t RP	-	n
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin (ns): non-DBI	READ CL: non-DBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Мах	Uni
1333	-	13.50	9	11	9	^t CK (AVG)	1.500	1.900 ⁶	Rese	erved	n
	-	15.00	10	12		^t CK (AVG)	1.500 ⁶	1.900 ⁶	1.500	1.900 ⁶	n
1600	-125E	13.75	11	13	9, 11	^t CK (AVG)	1.250	<1.500	Rese	erved	r
	-125	15.00	12	14		^t CK (AVG)			1.250	<1.500	r
1866	-107E	13.92	13	15	10, 12	^t CK (AVG)	1.071	<1.250	Rese	erved	r
	-107	15.00	14	16	-	^t CK (AVG)	-		1.071	<1.250	n
2133	-093E	14.06	15	18	11, 14	^t CK (AVG)	0.937	<1.071	Rese	erved	n
	-093	15.00	16	19	-	^t CK (AVG)			0.937	<1.071	n
Supported CL	settings		1	1	1		9, 10 ⁶ ,	11–16	10, 12,	, 14, 16	n
Supported CL	settings with rea	d DBI					11, 12 ⁶ , 13	8–16, 18-19	12, 14,	, 16, 19	n
Supported CE	J										

Micron

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

Notes: 1. Speed Bin table is only valid with DLL enabled.

- 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ${}^{t}CK-CL-nRCD-nRP$ combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

Table 161: DDR4-2400 Speed Bins and Operating Conditions

DDR4-2400 9	-							83E)83		83D	
CL-nRCD-nRI	P					Construct		16-16		17-17		18-18	
Parameter		unt alata				Symbol	Min	Max	Min	Мах	Min	Мах	Un
internal kead	command to fi	rstuala				^t AA	13.32	19.00 ⁶	14.16 (13.75) ⁴	19.00 ⁶	15.00	19.00 ⁶	n
Internal READ	command to fi	rst data with r	ead DBI ena	bled		^t AA_DBI	^t AA (MIN)+ 3 <i>n</i> CK	^t AA (MAX) + 3 <i>n</i> CK	^t AA (MIN) + 3 <i>n</i> CK	^t AA (MAX) + 3 <i>n</i> CK	^t AA (MIN) + 3 <i>n</i> CK	^t AA (MAX) + 3 <i>n</i> CK	r
ACTIVATE to	internal READ o	or WRITE delay	' time			^t RCD	13.32	-	14.16 (13.75) ⁴	-	15.00	19.00	r
PRECHARGE	command perio	d				^t RP	13.32	-	14.16 (13.75) ⁴	-	15.00	19.00	r
ACTIVATE-to-	-PRECHARGE co	mmand period	1			^t RAS	32	9 × ^t REFI	32	9 × ^t REFI	32	9 × ^t REFI	r
ACTIVATE-to-ACTIVATE or REFRESH command period				^t RC ⁵	^t RAS + ^t RP	-	^t RAS + ^t RP	_	^t RAS + ^t RP	_	r		
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin (ns): non-DBI	READ CL: non-DBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Мах	Min	Мах	Un
1333	-	13.50	9	11	9	^t CK (AVG)	1.500	1.900 ⁶	Rese	erved	Rese	erved	r
	-	15.00	10	12		^t CK (AVG)	1.500 ⁶	1.900 ⁶	1.500	1.900 ⁶	1.500	1.900 ⁶	n
1600	-125E	13.75	11	13	9, 11	^t CK (AVG)	1.250	<1.500	1.250	<1.500	Rese	erved	r
	-125	15.00	12	14		^t CK (AVG)					1.250	<1.500	n
1866	-107E	13.92	13	15	10, 12	^t CK (AVG)	1.071	<1.250	1.071	<1.250	Rese	erved	r
	-107	15.00	14	16		^t CK (AVG)	-				1.071	<1.250	n
2133	-093E	14.06	15	18	11, 14	^t CK (AVG)	0.937	<1.071	0.937	<1.071	Rese	erved	n
	-093	15.00	16	19		^t CK (AVG)					0.937	<1.071	n
2400	-083E	13.32	16	19	12, 16	^t CK (AVG)	0.833	<0.937	Rese	erved	Rese	erved	n
	-083	14.16	17	20		^t CK (AVG)	1		0.833	<0.937			n
					-		-1	1	1			1	+

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

$\overline{\mathbf{O}}$	
7	
2	
D	

Unit nCK nCK

nCK

DDR4-2400 Speed Bin		-0	83E	-0	83	-08	B3D
CL-nRCD-nRP		16-	16-16	17- 1	17-17	18-1	8-18
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах
Supported CL settings		9, 10 ⁶	, 11–18	10-	-18	10, 12, 1	4, 16, 18
Supported CL settings with read DBI		-	⁵ , 13–16, –21	12–16,	18–21	12, 14, 1	6, 19, 21
Supported CWL settings		9–12,	14, 16	9-12,	14, 16	9–12,	14, 16

Notes: 1. Speed Bin table is only valid with DLL enabled.

- 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ^tCK-CL-*n*RCD-*n*RP combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

Table 162: DDR4-2666 Speed Bins and Operating Conditions

DDR4-2666 9	-							75E)75		75D	
CL-nRCD-nRI	•					Cumhal		18-18		19-19		20-20	
Parameter Internal READ	command to fi	rst data				Symbol ^t AA	Min 13.50	Max 19.00 ⁶	Min 14.25 (13.75) ⁴	Max 19.00 ⁶	Min 15.00	Max 19.00 ⁶	Un n
Internal READ	command to fi	rst data with r	ead DBI ena	bled		^t AA_DBI	^t AA (MIN) + 3nCK	^t AA (MAX) + 3nCK	^t AA (MIN)+ 3 <i>n</i> CK	^t AA (MAX) + 3 <i>n</i> CK	^t AA (MIN)+ 3 <i>n</i> CK	^t AA (MAX) + 3nCK	n
ACTIVATE to	internal READ o	or WRITE delay	time			^t RCD	13.50	_	14.25 (13.75) ⁴	_	15.00	_	n
PRECHARGE	command perio	d				^t RP	13.50	_	14.25 (13.75) ⁴	_	15.00	_	n
ACTIVATE-to-	PRECHARGE co	mmand period				^t RAS	32	9 × ^t REFI	32	9 × ^t REFI	32	9 × ^t REFI	n
ACTIVATE-to-	ACTIVATE or RI	EFRESH comma	and period			^t RC ⁵	^t RAS + ^t RP	_	^t RAS + ^t RP	_	^t RAS + ^t RP	_	r
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin (ns): non-DBI	READ CL: non-DBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Мах	Min	Мах	Ur
1333	-	13.50	9	11	9	^t CK (AVG)	1 500		Rese	erved	Rese	erved	n
	-	15.00	10	12	9	^t CK (AVG)	1.500	1.900 ⁶	1.500	1.900 ⁶	1.500	1.900 ⁶	n
1600	-125E	13.75	11	13	0.11	^t CK (AVG)	1 250	1 500	1 250	1 500	Rese	erved	n
	-125	15.00	12	14	9, 11	^t CK (AVG)	1.250	<1.500	1.250	<1.500	1.250	<1.500	r
1866	-107E	13.92	13	15	10.10	^t CK (AVG)	4.074	4.250	4.074	4.250	Rese	erved	n
	-107	15.00	14	16	- 10, 12	^t CK (AVG)	1.071	<1.250	1.071	<1.250	1.071	<1.250	n
2133	-093E	14.06	15	18		^t CK (AVG)	0.027	1.071	0.027	1.071	Rese	erved	n
	-093	15.00	16	19	11, 14	^t CK (AVG)	0.937	<1.071	0.937	<1.071	0.937	<1.071	n
2400	-083E	13.32	16	19		^t CK (AVG)	Res	erved	Rese	erved	Dee		n
	-083	14.16	17	20	12, 16	^t CK (AVG)	0.000	0.027	0.022	0.027	Kese	erved	n
			18	21	-	^t CK (AVG)	0.833	<0.937	0.833	<0.937	t	<0.937	n

Micron

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

DDR4-2666 9	Speed Bin						-0	75E	-()75	-07	75D	
CL-nRCD-nRF	•						18-	18-18	19-	19-19	20-2	20-20	
Parameter						Symbol	Min	Мах	Min	Мах	Min	Мах	Unit
2666	-075E	13.50	18	21		^t CK (AVG)			Rese	erved	Por	erved	ns
	-075	14.25	19	22	14, 18	^t CK (AVG)	0.750	<0.833	0.750	<0.833	Nest	erveu	ns
	-075D	15.00	20	23		^t CK (AVG)			0.750	<0.855	0.750	<0.833	ns
Supported CL	settings					•	9.	-20	10	-20		4, 16, 18,	nCK
											4	20	
Supported CL	settings with re	ead DBI					11–16	5, 18–23	12–16	, 18–23		6, 19, 21, 23	nCK
Supported CV	VI cottings						0 1 2 1	1 16 19	0 1 2 1	1 16 10			- CK
Supported CV	vil settings						9-12, 1	4, 16, 18	9–12, 1	4, 16, 18	9-12, 1	4, 16, 18	nCK

Notes: 1. Speed Bin table is only valid with DLL enabled.

- 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ^tCK-CL-*n*RCD-*n*RP combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

355

Micron

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

Table 163: DDR4-2933 Speed Bins and Operating Conditions

DDR4-2933 9	-							68E		068		68D	
CL-nRCD-nR	>							20-20		21-21		22-22	
Parameter						Symbol	Min	Мах	Min	Мах	Min	Мах	Un
Internal READ	command to f	irst data				^t AA	13.64	19.00 ⁶	14.32 (13.75) ⁴	19.00 ⁶	15.00	19.00 ⁶	n
Internal READ	command to f	irst data with re	ead DBI ena	bled		^t AA_DBI	^t AA (MIN) + 4nCK	^t AA (MAX) + 4nCK	^t AA (MIN) + 4nCK	^t AA (MAX) + 4nCK	^t AA (MIN) + 4nCK	^t AA (MAX) + 4nCK	n
ACTIVATE-to-	internal READ	or WRITE delay	time			^t RCD	13.64	_	14.32 (13.75) ⁴	_	15.00	_	n
PRECHARGE	command perio	d				^t RP	13.64	-	14.32 (13.75) ⁴	-	15.00	-	n
ACTIVATE-to-	PRECHARGE co	mmand period				^t RAS	32	9 × ^t REFI	32	9 × ^t REFI	32	9 × ^t REFI	n
ACTIVATE-to-	ACTIVATE or R	EFRESH comma	nd period			^t RC ⁵	^t RAS + ^t RP	_	^t RAS + ^t RP	_	^t RAS + ^t RP	_	r
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin(ns): non-DBI	READ CL: non-DBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Мах	Min	Мах	Un
1333	-	13.50	9	11	9	^t CK (AVG)	Res	erved	Rese	erved	Rese	erved	n
	-	15.00	10	12		^t CK (AVG)	1.500	1.900 ⁶	1.500	1.900 ⁶	1.500	1.900 ⁶	n
1600	-125E	13.75	11	13	9, 11	^t CK (AVG)	1.250	<1.500	1.250	<1.500	Rese	erved	n
	-125	15.00	12	14	_	^t CK (AVG)					1.250	<1.500	r
1866	-107E	13.92	13	15	10, 12	^t CK (AVG)	1.071	<1.250	1.071	<1.250	Rese	erved	n
	-107	15.00	14	16	-	^t CK (AVG)					1.071	<1.250	n
2133	-093E	14.06	15	18	11, 14	^t CK (AVG)	0.937	<1.071	0.937	<1.071	Rese	erved	n
	-093	15.00	16	19		^t CK (AVG)					0.937	<1.071	n
2400	-083E	13.32	16	19	12, 16	^t CK (AVG)	Reso	erved	Rese	erved	Rese	erved	n
	-083	14.16	17	20	1	^t CK (AVG)	0.833	<0.937	0.833	<0.937			n
								1	1		1		1

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

DDR4-2933 S	ipeed Bin						-0	68E	-(68	-0	68D	
CL-nRCD-nRP							20-	20-20	21-3	21-21	22-	22-22	
Parameter						Symbol	Min	Мах	Min	Мах	Min	Мах	Unit
2666	-075E	13.50	18	21	14, 18	^t CK (AVG)	Res	erved	Rese	erved	Rese	erved	ns
	-075	14.25	19	22		^t CK (AVG)	0.750	<0.833	0.750	<0.833	-		ns
	-075D	15.00	20	23		^t CK (AVG)					0.750	<0.833	ns
2933	-068E	13.64	20	24	16, 20	^t CK (AVG)	0.682	<0.750	Rese	erved	Rese	erved	ns
	-068	14.32	21	25		^t CK (AVG)			0.682	<0.750	-		ns
	-068D	15.00	22	26		^t CK (AVG)					0.682	<0.750	ns
	_	16.37	24	28		^t CK (AVG)	Res	erved	Rese	erved	Rese	erved	ns
Supported CL	settings			1	1		10	-22	10	-22		4, 16, 18, , 22	nCK
Supported CL	settings with re	ead DBI					12–16	, 18–26		,18–23, -26		6, 19, 21, , 26	nCK
Supported CW	VL settings						-	4, 16, 18, 20		4, 16, 18, 20		4, 16, 18, 20	nCK

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

CCMTD-1725822587-9875 8gb_ddr4_dram.pdf - Rev. T 09/2021 EN

Notes: 1. Speed Bin table is only valid with DLL enabled.

- 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ^tCK-CL-*n*RCD-*n*RP combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

Table 164: DDR4-3200 Speed Bins and Operating Conditions

DDR4-3200	Speed Bin						-06	52Y ⁶	-0	62E		62	
CL-nRCD-nRP								22-22	22-2	22-22	24-2	24-24	
Parameter						Symbol	Min	Мах	Min	Мах	Min	Мах	Uni
Internal READ) command to fi	irst data				^t AA	13.75 (13.32) 4	19.00 ⁶	13.75	19.00 ⁶	15.00	19.00 ⁶	ns
Internal READ) command to fi	irst data with r	ead DBI ena	abled		^t AA_DBI	^t AA (MIN)+ 4nCK	^t AA (MAX) + 4nCK	^t AA (MIN)+ 4nCK	^t AA (MAX) + 4nCK	^t AA (MIN)+ 4nCK	^t AA (MAX) + 4nCK	ns
ACTIVATE-to	-internal READ	or WRITE delay	time			^t RCD	13.75 (13.32) 4	_	13.75	_	15.00	_	ns
PRECHARGE	command perio	d				^t RP	13.75 (13.32) 4	_	13.75	_	15.00	_	ns
ACTIVATE-to	-PRECHARGE co	mmand period				^t RAS	32	9 × ^t REFI	32	9 × ^t REFI	32	9 × ^t REFI	ns
ACTIVATE-to	-ACTIVATE or R	EFRESH comma	nd period			^t RC ⁵	^t RAS + ^t RP	_	^t RAS + ^t RP	_	^t RAS + ^t RP	_	ns
Data Rate Max (MT/s)	Equivalent Speed Bin	^t AAmin (ns): non-DBI	READ CL: non-DBI	READ CL: DBI	WRITE CWL	Symbol	Min	Мах	Min	Мах	Min	Мах	Uni
1333	-	13.50	9	11	9	^t CK (AVG)	1.500	1.900 ⁶	Rese	erved	Rese	erved	ns
	-	15.00	10	12	-	^t CK (AVG)	-		1.500	1.900 ⁶	1.500	1.900 ⁶	ns
1600	-125E	13.75	11	13	9, 11	^t CK (AVG)	1.250	<1.500	1.250	<1.500	Rese	erved	ns
	-125	15.00	12	14	1	^t CK (AVG)	-				1.250	<1.500	ns
1866	-107E	13.92	13	15	10, 12	^t CK (AVG)	1.071	<1.250	1.071	<1.250	Rese	erved	ns
	-107	15.00	14	16	1	^t CK (AVG)	1				1.071	<1.250	ns
2133	-093E	14.06	15	18	11, 14	^t CK (AVG)	0.937	<1.071	0.937	<1.071	Rese	erved	ns
	-093	15.00	16	19	1	^t CK (AVG)	1				0.937	<1.071	ns

8Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables

دی در بعدیو products or specifications without notice. © 2015 Micron Technology, Inc. All rights reserved.

DDR4-3200 Speed Bin

DDR4-3200	Speed Bin						-06	52 Y °	-0	62E	-0	162	
CL-nRCD-nRF							22-2	22-22	22-2	22-22	24-2	24-24]
Parameter						Symbol	Min	Мах	Min	Мах	Min	Мах	Unit
2400	-083E	13.32	16	19	12, 16	^t CK (AVG)	0.833	<0.937	Res	erved	Res	erved	ns
	-083	14.16	17	20		^t CK (AVG)			0.833	<0.937			ns
	-083D	15.00	18	21		^t CK (AVG)					0.833	<0.937	ns
2666	-075E	13.50	18	21	14, 18	^t CK (AVG)	0.750	<0.833	Res	erved	Res	erved	ns
	-075	14.25	19	22		^t CK (AVG)			0.750	<0.833			ns
	-075D	15.00	20	23		^t CK (AVG)					0.750	<0.833	ns
2933	-068E	13.64	20	24	16, 20	^t CK (AVG)	Res	erved	Res	erved	Res	erved	ns
	-068	14.32	21	25		^t CK (AVG)	0.682	<0.750	0.682	<0.750	Ţ		ns
	-068D	15.00	22	26		^t CK (AVG)			0.682	<0.750	0.682	<0.750	ns
	_	16.37	24	28		^t CK (AVG)					0.682	<0.750	ns
3200	-062E	13.75	22	26	16, 20	^t CK (AVG)	0.625	<0.682	0.625	<0.682	Res	erved	ns
	-062	15.00	24	28		^t CK (AVG)					0.625	<0.682	ns
Supported Cl	_ settings						9–2	2, 24	10–2	22, 24		4, 16, 18, 22, 24	nCK
Supported Cl	L settings with r	ead DBI						, 18–23, 26, 28		i, 18–23, 26, 28		6, 19, 21, 26, 28	nCK
Supported C	WL settings						-	4, 16, 18, 20		4, 16, 18, 20	-	4, 16, 18, 20	nCK

-062V⁶

-062F

-062

Notes: 1. Speed Bin table is only valid with DLL enabled.

- 2. When operating in 2^tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable ^tCK range.
- 3. The programmed value of CWL must be less than or equal to the programmed value of CL.
- 4. This value applies to non-native ^tCK-CL-*n*RCD-*n*RP combinations.
- 5. When calculating ^tRC in clocks, values may not be used in a combination that violate ^tRAS or ^tRP.
- 6. This value exceeds the JEDEC requirement in order to allow additional flexibility, especially for components. However, JEDEC SPD compliance may force modules to only support the JEDEC defined value, please refer to the SPD documentation.

Refresh Parameters By Device Density

Table 165: Refresh Parameters by Device Density

Parameter		Symbol	2Gb	4Gb	8Gb	16Gb	Unit	Notes
REF command to ACT or REF com- mand time	^t RFC (All bank groups)	160	260	350	350	ns	
Average periodic refresh interval	^t REFI	$-40^{\circ}C \le T_C \le 85^{\circ}C$	7.8	7.8	7.8	7.8	μ s	
		85°C < T _C ≤ 95°C	3.9	3.9	3.9	3.9	μs	1
		95°C < T _C ≤ 105°C	1.95	1.95	1.95	1.95	μ s	1

Notes: 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if the devices support these options or requirements.

Parameters
AC Timing
haracteristics and /
AC Electrical Cl

Table 166: Electrical Characteristics and AC Timing Parameters: DDR4-1600 through DDR4-2400

22587	lable 166: Electrical Characteristics and AC liming Parameters: DDK4-1600 through DDK4-2400	racteristics and	d AC liming Par	ameter	s: DDK ²	- 160U	througi		-2400				
7-9875				DDR4-1600	-1600	DDR4	DDR4-1866	DDR4	DDR4-2133	DDR4-2400	-2400		
	Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Notes
				Clock	Clock Timing								
	Clock period average (DLL off mode)	ff mode)	^t CK (AVG, DLL_OFF)	ø	20	ø	20	ø	20	œ	20	su	
	Clock period average		^t CK (AVG, DLL_ON)	1.25	1.9	1.071	1.9	0.937	1.9	0.833	1.9	su	3, 13
	High pulse width average		^t CH (AVG)	0.48	0.52	0.48	0.52	0.48	0.52	0.48	0.52	tCK (AVG)	
	Low pulse width average		^t CL (AVG)	0.48	0.52	0.48	0.52	0.48	0.52	0.48	0.52	tCK (AVG)	
	Clock period jitter	Total	^t JITper_tot	-63	63	-54	54	-47	47	-42	42	sd	17 , 18
		Deterministic	^t JITper_dj	-31	31	-27	27	-23	23	-21	21	sd	17
261		DLL locking	^t JITper,lck	-50	50	-43	43	-38	38	-33	33	sd	
	Clock absolute period		^t CK (ABS)	MIN = ^t	ck (avg) MIN + ^t	'JITper_tot MIN; ^t JITper_tot MAX	ot MAX	AAX = ^t C	MIN = ^t CK (AVG) MIN + ^t JITper_tot MIN; MAX = ^t CK (AVG) MAX + ^t JITper_tot MAX	HAX +	sd	
Micron Tech	Clock absolute high pulse width (includes duty cycle jitter)	dth	^t CH (ABS)	0.45	I	0.45	I	0.45	I	0.45	I	^t CK (AVG)	
nology, Inc. I	Clock absolute low pulse width (includes duty cycle jitter)	lth	^t CL (ABS)	0.45	I	0.45	I	0.45	I	0.45	I	^t CK (AVG)	
eserves	Cycle-to-cycle jitter	Total	^t JITcc _tot	I	125	I	107	I	94	I	83	bs	
the riak		DLL locking	^t JITcc,lck	I	100	I	86	I	75	I	67	sd	

			DDR4	-1600	DDR/	I-1866	DDR/	1-2133	DDR4	-2400		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Notes
Cumulative error across	2 cycles	^t ERR2per	-92	92	-79	79	-69	69	-61	61	ps	
	3 cycles							ps				
	4 cycles	^t ERR4per	-121	121	-104	104	-91	91	-81	81	ps	
	5 cycles	^t ERR5per	-131	131	-112	112	-98	98	-87	87	ps	
	6 cycles	^t ERR6per	-139	139	-119	119	-104	104	-92	92	ps	
	7 cycles	^t ERR7per	-145	145	-124	124	-109	109	-97	97	ps	
	8 cycles	^t ERR8per	-151	151	-129	129	-113	113	-101	101	ps	
	9 cycles	^t ERR9per	-156	156	-134	134	-117	117	-104	104	ps	
	10 cycles	^t ERR10per	-160	160	-137	137	-120	120	-107	107	ps	
	11 cycles	tERR11per										
	12 cycles	^t ERR12per	-168	168	-144	144	-126	126	-112	112	ps	
	n = 13, 14 49, 50 cycles	^t ERR <i>n</i> per	^t ERR <i>n</i> pe	•	•			•			ps	
	11		DQ Inp	ut Timir	ıg							
Data setup time to DQS_t, DQS_c	Base (cali- brated V _{REF})	^t DS					-					
	Noncalibrated V _{REF}	^t PDA_S			1	minimum	n of 0.5U	I			UI	22
Data hold time from DQS_t, DQS_c	Base (cali- brated V _{REF})	^t DH				•	•				-	
	Noncalibrated V _{REF}	^t PDA_H			1	minimum	n of 0.5U	I			UI	22
DQ and DM minimum data p each input	oulse width for											
		DQ Ou	ıtput Timi	ing (DLl	. enable	d)						
DQS_t, DQS_c to DQ skew, po access		^t DQSQ	_	0.16	-	0.16	-	0.16	-	0.17	UI	
DQ output hold time from D	QS_t, DQS_c	^t QH	0.76	-	0.76	-	0.76	-	0.74	-	UI	

Nicron

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

CCMTD-1725822587-9875 8gb_ddr4_dram.pdf - Rev. T 09/2021 EN

		DDR4	-1600	DDR4	-1866	DDR4	l-2133	DDR4	-2400		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Max	Min	Мах	Unit	Note
Data Valid Window per device: ^t QH - ^t DQSQ each device's output per UI	^t DVW _d	0.63		0.63		0.64		0.64		UI	
Data Valid Window per device, per pin: ^t QH - ^t DQSQ each device's output per UI	^t DVW _p	0.66	_	0.66	_	0.69	_	0.72	-	UI	
DQ Low-Z time from CK_t, CK_c	^t LZDQ	-450	225	-390	195	-360	180	-330	175	ps	
DQ High-Z time from CK_t, CK_c	^t HZDQ	-	225	_	195	_	180	_	175	ps	
	D	Q Strobe	Input Ti	ming	I	I	<u>I</u>	<u>I</u>	<u> </u>		I
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge for 1 ^t CK preamble	^t DQSS _{1ck}	-0.27	0.27	-0.27	0.27	-0.27	0.27	-0.27	0.27	СК	
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge for 2 ^t CK preamble	^t DQSS _{2ck}	N	A	Ν	A	N	A	-0.50	0.50	СК	
DQS_t, DQS_c differential input low pulse width	^t DQSL	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	СК	
DQS_t, DQS_c differential input high pulse width	^t DQSH	0.46	0.54	0.46	0.54	0.46	0.54	0.46	0.54	СК	
DQS_t, DQS_c differential input high pulse width for 2 ^t CK preamble	^t DQSH2PRE	N	A	Ν	A	N	A	1.46	-	СК	
DQS_t, DQS_c falling edge setup to CK_t, CK_c rising edge for 1 ^t CK preamble	^t DSS _{1ck}	0.18	_	0.18	_	0.18	_	0.18	_	СК	
DQS_t, DQS_c falling edge setup to CK_t, CK_c rising edge for 2 ^t CK preamble	^t DSS _{2ck}	N	A	Ν	A	NA		0	-	СК	
DQS_t, DQS_c falling edge hold from CK_t, CK_c rising edge for 1 ^t CK preamble	^t DSH _{1ck}	0.18	-	0.18	-	0.18	_	0.18	-	СК	
DQS_t, DQS_c falling edge hold from CK_t, CK_c rising edge for 2 ^t CK preamble	^t DSH _{2ck}	N	A	N	A	N	A	0	-	СК	
DQS_t, DQS_c differential WRITE preamble for 1 ^t CK preamble	^t WPRE _{1ck}	0.9	-	0.9	-	0.9	-	0.9	-	СК	
DQS_t, DQS_c differential WRITE preamble for 2 ^t CK preamble	^t WPRE _{2ck}	N	A	N	A	N	A	1.8	-	СК	
DQS_t, DQS_c differential WRITE postamble	^t WPST	0.33	-	0.33	-	0.33	-	0.33	-	CK	1

			DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	-2400		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
DQS_t, DQS_c rising edge ou from rising CK_t, CK_c	tput access time	^t DQSCK	-225	225	-195	195	-180	180	-175	175	ps	
DQS_t, DQS_c rising edge ou window per DRAM	tput variance	^t DQSCKi	-	370	-	330	-	310	-	290	ps	
DQS_t, DQS_c differential ou	ıtput high time	^t QSH	0.4	-	0.4	-	0.4	-	0.4	-	СК	
DQS_t, DQS_c differential ou	Itput low time	^t QSL	0.4	_	0.4	_	0.4	_	0.4	-	СК	
DQS_t, DQS_c Low-Z time (R	L - 1)	^t LZDQS	-450	225	-390	195	-360	180	-330	175	ps	
DQS_t, DQS_c High-Z time (F	RL + BL/2)	^t HZDQS	-	225	_	195	_	180	_	175	ps	
DQS_t, DQS_c differential RE 1 ^t CK preamble	AD preamble for	^t RPRE _{1ck}	0.9	-	0.9	-	0.9	-	0.9	-	СК	20
DQS_t, DQS_c differential RE 2 ^t CK preamble	AD preamble for	^t RPRE _{2ck}	N	A	N	A	N	A	1.8	-	СК	20
DQS_t, DQS_c differential RE	AD postamble	^t RPST	0.33	-	0.33	-	0.33	-	0.33	-	CK	21
		Com	nand and	Addres	s Timin	g	1					
DLL locking time		^t DLLK	597	-	597	-	768	-	768	-	СК	2, 4
CMD, ADDR setup time to CK_t, CK_c Base referenced	Base	^t IS	115	-	100	-	80	-	62	-	ps	
to $V_{IH(AC)}$ and $_{VIL(AC)}$ levels	V _{REFCA}	^t IS _{VREF}	215	-	200	-	180	-	162	-	ps	
CMD, ADDR hold time to	Base	^t IH	140	-	125	-	105	-	87	-	ps	
CK_t, CK_c Base referenced to V _{IH(DC)} and _{VIL(DC)} levels	V _{REFCA}	^t IH _{VREF}	215	-	200	-	180	-	162	-	ps	
CTRL, ADDR pulse width for	each input	^t IPW	600	_	525	_	460	_	410	_	ps	
ACTIVATE to internal READ	or WRITE delay	^t RCD		I	See Sp	eed Bin	Tables fo	or ^t RCD	I		ns	
PRECHARGE command perio	d	^t RP			See S	peed Bin	Tables f	or ^t RP			ns	
ACTIVATE-to-PRECHARGE co	mmand period	^t RAS			See Sp	eed Bin [·]	Tables fo	or ^t RAS			ns	12
ACTIVATE-to-ACTIVATE or R period	EF command	^t RC			See S	peed Bin	Tables f	or ^t RC			ns	12
ACTIVATE-to-ACTIVATE com different bank groups for 1/2		^t RRD_S (1/2KB)	MIN = of 4CK	greater	MIN =	greater		greater or 3.7ns		greater or 3.3ns	СК	1

		DDR4	-1600	DDR4-1866		DDR4-2133		133 DDR4-2400			
Parameter	Symbol	Min	Мах	Min	Мах	Min	Max	Min	Мах	Unit	Note
ACTIVATE-to-ACTIVATE command period to different bank groups for 1KB page size	^t RRD_S (1KB)	MIN = 9 of 4CK	greater or 5ns		greater or 4.2ns		greater or 3.7ns		greater or 3.3ns	СК	1
ACTIVATE-to-ACTIVATE command period to different bank groups for 2KB page size	^t RRD_S (2KB)	MIN = 9 of 4CK	greater or 6ns		greater or 5.3ns		greater or 5.3ns		greater or 5.3ns	СК	1
ACTIVATE-to-ACTIVATE command period to same bank groups for 1/2KB page size	^t RRD_L (1/2KB)	MIN = 9 of 4CK			greater or 5.3ns		greater or 5.3ns		greater or 4.9ns	СК	1
ACTIVATE-to-ACTIVATE command period to same bank groups for 1KB page size	^t RRD_L (1KB)	MIN = 9 of 4CK	greater or 6ns		greater or 5.3ns		greater or 5.3ns		greater or 4.9ns	СК	1
ACTIVATE-to-ACTIVATE command period to same bank groups for 2KB page size	^t RRD_L (2KB)	MIN = 9 of 4CK	greater or 7.5ns		greater or 6.4ns		greater or 6.4ns		greater or 6.4ns	СК	1
Four ACTIVATE windows for 1/2KB page size	^t FAW (1/2KB)		greater or 20ns		greater or 17ns		greater Cor 15ns		greater Cor 13ns	ns	
Four ACTIVATE windows for 1KB page size	^t FAW (1KB)	MIN = 9 of 20CK	greater or 25ns		greater Cor 23ns		greater Cor 21ns		greater Cor 21ns	ns	
Four ACTIVATE windows for 2KB page size	^t FAW (2KB)	MIN = 9 of 28CK			greater Cor 30ns		greater Cor 30ns		greater Cor 30ns	ns	
WRITE recovery time	^t WR _{1ck}				MIN :	= 15ns				ns	1, 5,
	^t WR _{2ck}			Ν	/IN = 1Cl	< + ^t WR ₁	ck			СК	1, 5, 1
WRITE recovery time when CRC and DM are both enabled	^t WR_CRC_DM _{1ck}	MIN = ^t greater or 3.	of (4CK	MIN	N = ^t WR ₁	_{ck} + grea	ter of (50	CK or 3.7	'5ns)	СК	1, 6,
	^t WR_CRC_DM _{2ck}			MIN =	= 1CK + ^t \	WR_CRC	_DM _{1ck}			CK	1, 6, 1
Delay from start of internal WRITE transac- tion to internal READ command – Same bank	^t WTR_L _{1ck}			MIN =	greater	of 4CK o	or 7.5ns			СК	1, 5,
group	^t WTR_L _{2ck}			MI	N = 1CK	+ ^t WTR_	L _{1ck}			СК	1, 5, 1
Delay from start of internal WRITE transac- tion to internal READ command – Same bank group when CRC and DM are both enabled	^t WTR_L_CRC_DM _{1ck}	MII ^t WTR_ greater or 3. ²	of (4CK	MIN :	= ^t WTR_L	- _{1ck} + gre	eater of (5CK or 3	.75ns)	СК	1, 6,
	^t WTR_L_CRC_DM _{2ck}			MIN = 1	CK + ^t W	TR_L_CR	C_DM _{1ck}			СК	1, 6,

		DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4-2400			
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
Delay from start of internal WRITE transac- tion to internal READ command – Different	^t WTR_S _{1ck}			MIN = g	greater (of (2CK o	r 2.5ns)			СК	1, 5, 7 8, 9
bank group	^t WTR_S _{2ck}			MI	N = 1CK	+ ^t WTR_S	1ck			СК	1, 5, 7 8, 10
Delay from start of internal WRITE transac- tion to internal READ command – Different bank group when CRC and DM are both enabled	^t WTR_S_CRC_DM _{1ck}	MII ^t WTR_ greater or 3.7	S _{1ck} + of (4CK	MIN =	= ^t WTR_	5 _{1ck} + gre	ater of (5CK or 3.	.75ns)	СК	1, 6, 7 8, 9
	^t WTR_S_CRC_DM _{2ck}			MIN = 1	CK + ^t W		СК	1, 6, 7 8, 10			
READ-to-PRECHARGE time	^t RTP				MIN = greater o		r 7.5ns			CK	1
CAS_n-to-CAS_n command delay to different bank group	^t CCD_S	4	-	4	-	4	-	4	-	СК	
CAS_n-to-CAS_n command delay to same bank group	^t CCD_L	MIN = greate r of 4CK or 6.25ns	_	MIN = greate r of 4CK or 5.355n s	-	MIN = greate r of 4CK or 5.355n s	-	MIN = greate r of 4CK or 5ns	_	СК	14
Auto precharge write recovery + precharge time	^t DAL (MIN)		MIN =	= WR + R0	OUND ^t R	P/ ^t CK (AV	′G); MAX	K = N/A		CK	8
	MF	RS Comn	nand Tii	ming							
MRS command cycle time	^t MRD	8	-	8	-	8	-	8	-	CK	
MRS command cycle time in PDA mode	^t MRD_PDA			MIN = g	greater	of (16nCk	(, 10ns)			СК	1
MRS command cycle time in CAL mode	^t MRD_CAL			Ν	1IN = ^t M	OD + ^t CA	L			СК	
MRS command update delay	^t MOD			MIN =	greater	of (24nCł	<, 15ns)			CK	1
MRS command update delay in PDA mode	^t MOD_PDA				MIN =	^t MOD				CK	
MRS command update delay in CAL mode	^t MOD_CAL			Ν	1IN = ^t M	OD + ^t CA	L			СК	
MRS command to DQS drive in preamble training	^t SDO			Γ	MIN = ^t N	10D + 9n	S				
	MP	R Comn	nand Tii	ming							
Multipurpose register recovery time	tmp	R Comn	nand Tii	ming	MIN	= 1CK				СК	

		DDR4	-1600	DDR4	1-1866	DDR4	-2133	DDR4	-2400		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
Multipurpose register write recovery time	^t WR_MPR			М	N = ^t MO	D + AL +	PL		•		
	CRC E	rror Rej	porting	Timing						<u> </u>	1
CRC error to ALERT_n latency	^t CRC_ALERT	3	13	3	13	3	13	3	13	ns	
CRC ALERT_n pulse width	^t CRC_ALERT_PW	6	10	6	10	6	10	6	10	СК	
		CA Pari	ty Timin	g			L			L	1
Parity latency	PL	4	-	4	-	4	-	5	-	СК	
Commands uncertain to be executed during this time	^t PAR_UNKNOWN	_	PL	_	PL	_	PL	_	PL	СК	
Delay from errant command to ALERT_n assertion	^t PAR_ALERT_ON	-	PL + 6ns	-	PL+ 6ns	_	PL + 6ns	_	PL + 6ns	СК	
Pulse width of ALERT_n signal when asserted	^t PAR_ALERT_PW	48	96	56	112	64	128	72	144	СК	
Time from alert asserted until DES commands required in persistent CA parity mode	^t PAR_ALERT_RSP	-	43	-	50	_	57	_	64	СК	
		CAL	Timing		<u> </u>		<u> </u>			<u> </u>	
CS_n to command address latency	^t CAL	3	-	4	-	4	-	5	-	СК	19
CS_n to command address latency in gear-down mode	^t CALg	N/A	-	N/A	-	N/A	-	N/A	-	СК	
		MPSN	l Timing				1			1	
Command path disable delay upopn MPSM entry	^t MPED		I	MIN = ^t N	10D (MIN	I) + ^t CPD	ED (MIN))		СК	1
Valid clock requirement after MPSM entry	^t CKMPE		I	MIN = ^t N	10D (MIN	I) + ^t CPD	ED (MIN))		СК	1
Valid clock requirement before MPSM exit	^t СКМРХ			Ν	/IIN = ^t CK	SRX (MII	۷)			СК	1
Exit MPSM to commands not requiring a locked DLL	^t XMP				^t XS (MIN)				СК	
Exit MPSM to commands requiring a locked DLL	^t XMPDLL			MIN = ^t >	(MP (MIN	I) + ^t XSD	LL (MIN)			СК	1
CS setup time to CKE	^t MPX_S			MIN	= ^t IS (MII	N) + ^t IH (MIN)			ns	
CS_n HIGH hold time to CKE rising edge	^t MPX_HH				MIN	= ^t XP				ns	

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

			DDR4	1-1600	DDR4	1-1866	DDR4-2133		DDR4	-2400		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
CS_n LOW hold time to CKE r	ising edge	^t MPX_LH	12	^t XMP- 10ns	12	^t XMP- 10ns	12	^t XMP- 10ns	12	^t XMP- 10ns	ns	
		Cor	nectivit	y Test T	iming	•		•	•			•
TEN pin HIGH to CS_n LOW –	Enter CT mode	^t CT_Enable	200	-	200	-	200	-	200	-	ns	
CS_n LOW and valid input to	valid output	^t CT_Valid	-	200	-	200	-	200	-	200	ns	
CK_t, CK_c valid and CKE HIG HIGH	H after TEN goes	^t CTCKE_Valid	10	-	10	-	10	-	10	-	ns	
Calibration and V _{REFDQ} Tra	in Timing		•	•		•		•	•			•
ZQCL command: Long cali- bration time	POWER-UP and RESET operation	^t ZQinit	1024	_	1024	-	1024	_	1024	-	СК	
	Normal opera- tion	^t ZQoper	512	-	512	-	512	-	512	-	СК	
ZQCS command: Short calibr	^t ZQCS	128	-	128	-	128	-	128	-	CK		
The V _{REF} increment/decreme	nt step time	V _{REF_time}										
Enter V_{REFDQ} training mode t or V_{REFDQ} MRS command del		^t VREFDQE				MIN =	150ns				ns	1
Exit V _{REFDQ} training mode to command delay	the first WRITE	^t VREFDQX				MIN =	150ns				ns	1
		Initializat	ion and	Reset Ti	ming							
Exit reset from CKE HIGH to a	a valid command	^t XPR			I	MIN = ^t RF	C1 + 10	าร			ns	1
RESET_L pulse low after power	er stable	^t PW_RESET_S	1.0	-	1.0	-	1.0	-	1.0	-	μs	
RESET_L pulse low at power-u	up	^t PW_RESET_L	200	-	200	-	200	-	200	-	μs	
Begin power supply ramp to stable	power supplies	^t VDDPR		•	М	IN = N/A;	MAX =	200	1		ms	
RESET_n LOW to power supp	olies stable	^t RPS				MIN = 0;	MAX =	0			ns	
			Refres	h Timin	g						I	1

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

			DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	1-2400		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
REFRESH-to-ACTIVATE or REFRESH command period		^t RFC1				MIN =	= 260				ns	1, 11
(all bank groups)	4Gb	^t RFC2				MIN =	= 160				ns	1, 11
		^t RFC4				MIN =	= 110				ns	1, 11
		^t RFC1				MIN =	= 350				ns	1, 11
	8Gb	^t RFC2				MIN =	= 260				ns	1, 11
	-	^t RFC4				MIN =	= 160				ns	1, 11
		^t RFC1				MIN =	= 350				ns	1, 11
	16Gb	^t RFC2				MIN =	= 260				ns	1, 11
	-	^t RFC4	MIN = 160									1, 11
verage periodic refresh terval $-40^{\circ}C \le T_C \le$ $85^{\circ}C$		^t REFI		MIN = N/A; MAX = 7.8								11
	85°C < T _C ≤ 95°C	^t REFI		μs	11							
	95°C < T _C ≤ 105°C	^t REFI		μs	11							
Self Refresh Timing												1
Exit self refresh to command locked DLL	ds not requiring a	^t XS			Ν	/IIN = ^t RF	C1 + 10r	S			ns	1
Exit self refresh to command locked DLL in self refresh ab		^t XS_ABORT			Ν	/IIN = ^t RF	C4 + 10r	S			ns	1
Exit self refresh to ZQCL, ZQ CWL, WR, RTP and gear-dov		^t XS_FAST			Ν	/IIN = ^t RF	C4 + 10r	S			ns	1
Exit self refresh to comman locked DLL	ds requiring a	^t XSDLL			I	MIN = ^t DI	LLK (MIN)			СК	1
Minimum CKE low pulse wi refresh entry to self refresh		^t CKESR			MIN	I = ^t CKE ((MIN) + 1	nCK			СК	1
Minimum CKE low pulse width for self refresh entry to self refresh exit timing when CA parity is enabled		^t CKESR_PAR			MIN =	^t CKE (M	IN) + 1 <i>n</i> (CK + PL			СК	1
Valid clocks after self refres power-down entry (PDE)	h entry (SRE) or	^t CKSRE			MIN =	= greater	of (5CK,	10ns)			СК	1

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

		DDR4	-1600	DDR4	-1866	DDR4	-2133	DDR4	-2400		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
Valid clock requirement after self refresh entry or power-down when CA parity is enabled	^t CKSRE_PAR			MIN = g	reater of	f (5CK, 10	Dns) + PL		·	СК	1
Valid clocks before self refresh exit (SRX) or power-down exit (PDX), or reset exit	^t CKSRX			MIN =	= greater	of (5CK,	10ns)			СК	1
	Р	ower-Do	own Tin	ning							
Exit power-down with DLL on to any valid command	^t XP	MIN = greater of 4CK or 6ns								СК	1
Exit power-down with DLL on to any valid command when CA Parity is enabled.	^t XP _PAR	^t XP_PAR MIN = (greater of 4CK or 6ns) + PL								СК	1
CKE MIN pulse width	^t CKE (MIN)			MIN =	= greater	of 3CK o	or 5ns			СК	1
Command pass disable delay	^t CPDED	4	-	4	-	4	-	4	-	CK	
Power-down entry to power-down exit tim- ing	^t PD		I	MIN = ^t C	KE (MIN)); MAX =	9 × ^t REF	I		СК	
Begin power-down period prior to CKE regis- tered HIGH	^t ANPD				WL -	1CK				СК	
Power-down entry period: ODT either syn- chronous or asynchronous	PDE	Greate	er of ^t AN	IPD or ^t Rl	FC - REFR	ESH com	mand to	CKE LO	W time	СК	
Power-down exit period: ODT either synchro- nous or asynchronous	PDX				^t anpd +	+ ^t XSDLL				СК	
	Power-Do	wn Enti	r y Min ir	num Tin	ning						
ACTIVATE command to power-down entry	^t ACTPDEN	1	_	1	-	2	-	2	-	CK	
PRECHARGE/PRECHARGE ALL command to power-down entry	^t PRPDEN	1	-	1	-	2	-	2	-	СК	
REFRESH command to power-down entry	^t REFPDEN	1	-	1	-	2	-	2	-	СК	
MRS command to power-down entry	^t MRSPDEN		!	ا	MIN = ^t M	OD (MIN	I)		•	CK	1
READ/READ with auto precharge command to power-down entry	^t RDPDEN				MIN = R	L + 4 + 1				СК	1
WRITE command to power-down entry (BL8OTF, BL8MRS, BC4OTF)	^t WRPDEN			MIN =	WL + 4 +	· ^t WR/ ^t Ck	(AVG)			СК	1
WRITE command to power-down entry (BC4MRS)	^t WRPBC4DEN			MIN =	WL + 2 +	^t WR/ ^t Ck	(AVG)			СК	1

		DDR4	-1600	DDR4	l-1866	DDR4	-2133	DDR4	-2400		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
WRITE with auto precharge command to power-down entry (BL8OTF, BL8MRS,BC4OTF)	^t WRAPDEN			MI	N = WL +	+ 4 + WR	+ 1			СК	1
WRITE with auto precharge command to power-down entry (BC4MRS)	^t WRAPBC4DEN			MI	N = WL +	⊦ 2 + WR	+ 1			CK	1
· · · · · · · · · · · · · · · · · · ·		ODT	Timing							1	
Direct ODT turn-on latency	DODTLon			WL ·	- 2 = CWI	L + AL + I	PL - 2			СК	
Direct ODT turn-off latency	DODTLoff			WL ·	- 2 = CWI	L + AL + I	PL - 2			СК	
R _{TT} dynamic change skew	^t ADC	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	СК	
Asynchronous R _{TT(NOM)} turn-on delay (DLL off)	^t AONAS	1	9	1	9	1	9	1	9	ns	
Asynchronous R _{TT(NOM)} turn-off delay (DLL off)	^t AOFAS	1	9	1	9	1	9	1	9	ns	
ODT HIGH time with WRITE command and	ODTH8 1 ^t CK	6	-	6	-	6	-	6	-	CK	
BL8 -	ODTH8 2 ^t CK	N	A	N	A	N	A	7	-	-	
ODT HIGH time without WRITE command or	ODTH4 1 ^t CK	4	_	4	-	4	_	4	-	СК	
with WRITE command and BC4	ODTH4 2 ^t CK	N	A	N	A	N	A	5	_	-	
Write Leveling Timing											
First DQS_t, DQS_c rising edge after write lev- eling mode is programmed	^t WLMRD	40	-	40	-	40	-	40	-	СК	
DQS_t, DQS_c delay after write leveling mode is programmed	^t WLDQSEN	25	-	25	-	25	-	25	-	CK	
Write leveling setup from rising CK_t, CK_c crossing to rising DQS_t, DQS_c crossing	^t WLS	0.13	-	0.13	_	0.13	_	0.13	-	^t CK (AVG)	
Write leveling hold from rising DQS_t, DQS_c crossing to rising CK_t, CK_c crossing	^t WLH	0.13	_	0.13	_	0.13	_	0.13	-	^t CK (AVG)	
Write leveling output delay	^t WLO	0	9.5	0	9.5	0	9.5	0	9.5	ns	
Write leveling output error	^t WLOE	0	2	0	2	0	2	0	2	ns	
G	ear-Down Timing	g (Not Su	upporte	d Below	DDR4-2	2666)			1	1	1
Exit reset from CKE HIGH to a valid MRS gear-down	^t XPR_GEAR	N	/Α	N	/Α	N	Ά	N	/A	СК	

Table 166: Electrical Characteristics and AC Timing Parameters: DDR4-1600 through DDR4-2400 (Continued)

1												
1725			DDR4	l-1600	DDR4	1-1866	DDR4-2133		DDR4-2400			
87758	Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Notes
7-9875	CKE HIGH assert to gear-down enable time)	^t XS_GEAR	N/	Ά	N/	/A	N	/Α	N	/A	СК	
	MRS command to sync pulse time	^t SYNC_GEAR	N/	N/A		/A	N	/A	N	/A	CK	
	Sync pulse to first valid command	^t CMD_GEAR	N/	N/A		/A	N/A		N	/A	СК	
	Gear-down setup time	^t GEAR_setup	N/A	-	N/A	-	N/A	-	N/A	-	СК	
	Gear-down hold time	^t GEAR_hold	N/A	-	N/A	-	N/A	-	N/A	-	CK	

Notes: 1. Maximum limit not applicable.

- 2. Micron tDLLK values support the legacy JEDEC tDLLK specifications.
- 3. DDR4-1600 AC timing parameters apply if DRAM operates at lower than 1600 MT/s data rate.
- 4. Data rate is greater than or equal to 1066 Mb/s.
- 5. WRITE-to-READ when CRC and DM are both not enabled.
- 6. WRITE-to-READ delay when CRC and DM are both enabled.
- 7. The start of internal write transactions is defined as follows:
 - For BL8 (fixed by MRS and on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (fixed by MRS): rising clock edge two clock cycles after WL
- 8. For these parameters, the device supports ^tnPARAM [nCK] = ROUND{^tPARAM [ns]/^tCK (AVG) [ns]} according to the rounding algorithms found in the Converting Time-Based Specifications to Clock-Based Requirements section, in clock cycles, assuming all input clock jitter specifications are satisfied.
- 9. When operating in 1^tCK WRITE preamble mode.
- 10. When operating in 2^tCK WRITE preamble mode.
- 11. When CA parity mode is selected and the DLLoff mode is used, each REF command requires an additional "PL" added to ^tRFC refresh time.
- 12. DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row address may result in reduction of the product lifetime and/or reduction in data retention ability.
- 13. Applicable from ${}^{t}CK$ (AVG) MIN to ${}^{t}CK$ (AVG) MAX as stated in the Speed Bin tables.
- 14. JEDEC specifies a minimum of five clocks.
- 15. The maximum read postamble is bound by ^tDQSCK (MIN) plus ^tQSH (MIN) on the left side and ^tHZ(DQS) MAX on the right side.
- 16. The reference level of DQ output signal is specified with a midpoint as a widest part of output signal eye, which should be approximately 0.7 \times V_{DDQ} as a center level of the static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to V_{TT} = V_{DDQ}.
- 17. JEDEC hasn't agreed upon the definition of the deterministic jitter; the user should focus on meeting the total limit.
- 18. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of ^tCK (AVG) as a long-term jitter component; however, the spread spectrum may not use a clock rate below ^tCK (AVG) MIN.
- 19. The actual ^tCAL minimum is the larger of 3 clocks or 3.748ns/^tCK; the table lists the applicable clocks required at targeted speed bin.

ron
20. The maximum READ preamble is bounded by ^tLZ(DQS) MIN on the left side and ^tDQSCK (MAX) on the right side. See figure in the Clock to Data Strobe Relationship section. Boundary of DQS Low-Z occurs one cycle earlier in 2^tCK toggle mode, as illustrated in the READ Preamble section. 21. DQ falling signal middle-point of transferring from HIGH to LOW to first rising edge of DQS differential signal cross-point. 22. The ^tPDA_S/^tPDA_H parameters may use the ^tDS/^tDH limits, respectively, if the signal is LOW the entire BL8.

Electrical Characteristics and AC Timing Parameters: 2666 Through 3200

Table 167: Electrical Characteristics and AC Timing Parameters

			DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	rved		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Notes
			Cl	ock Timi	ng							
Clock period average (DLL	off mode)	^t CK (AVG, DLL_OFF)	8	20	8	20	8	20			ns	
Clock period average		^t CK (AVG, DLL_ON)	0.75	1.9	0.682	1.9	0.625	1.9			ns	3, 13
High pulse width average		^t CH (AVG)	0.48	0.52	0.48	0.52	0.48	0.52			^t CK (AVG)	
Low pulse width average		^t CL (AVG)	0.48	0.52	0.48	0.52	0.48	0.52			^t CK (AVG)	
Clock period jitter	Total	^t JITper_tot	-38	38	-34	34	-32	32			ps	17 , 18
	Deterministic	^t JITper_dj	-19	19	-17	17	-16	16			ps	17
	DLL locking	^t JITper,lck	-30	30	-27	27	-25	25			ps	
Clock absolute period		^t CK (ABS)	MIN = ^t	CK (AVG)	MIN + ^t JI		MIN; MA t MAX	X = ^t CK (AVG) MA	-TIL ^t + X	ps	
Clock absolute high pulse (includes duty cycle jitter)	width	^t CH (ABS)	0.45	_	0.45	_	0.45	_			^t CK (AVG)	
Clock absolute low pulse v (includes duty cycle jitter)	vidth	^t CL (ABS)	0.45	-	0.45	_	0.45	_			^t CK (AVG)	
Cycle-to-cycle jitter	Total	^t JITcc _tot	-	75	-	68	-	62			ps	
	DLL locking	^t JITcc,lck	-	60	-	55	-	62			ps	

			DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	erved		
Parameter		Symbol	Min	Max	Min	Max	Min	Мах	Min	Мах	Unit	Note
Cumulative error across	2 cycles	^t ERR2per	-55	55	-50	50	-46	46			ps	
	3 cycles	^t ERR3per	-66	66	-60	60	-55	55			ps	
	4 cycles	^t ERR4per	-73	73	-66	66	-61	61			ps	
	5 cycles	^t ERR5per	-78	78	-71	71	-65	65			ps	
	6 cycles	^t ERR6per	-83	83	-75	75	-69	69			ps	
	7 cycles	^t ERR7per	-87	87	-79	79	-73	73			ps	
	8 cycles	^t ERR8per	-91	91	-83	83	-76	76			ps	
	9 cycles	^t ERR9per	-94	94	-85	85	-78	78			ps	
	10 cycles	^t ERR10per	-96	96	-88	88	-80	80			ps	
	11 cycles	^t ERR11per	-99	99	-90	90	-83	83			ps	
	12 cycles	^t ERR12per	-101	101	-92	92	-84	84			ps	
	n = 13, 14 49, 50 cycles	^t ERR <i>n</i> per	^t ERR <i>n</i> pe	^t ERR <i>n</i> r MAX =		= (1 + 0.6 ln[<i>n</i>]) × ^t J		•	ot MIN		ps	
			DQ	Input Tir	ning						<u> </u>	<u> </u>
Data setup time to DQS_t, DQS_c	Base (cali- brated V _{REF})	^t DS				out Recei mately 0.	-				_	
	Non-cali- brated V _{REF}	^t PDA_S				minimun	n of 0.5ui				UI	22
Pata hold time from Base (cali- brated V _{REF}) tDH Refer to DQ Input Receiver Specification section (approximately 0.15 ^t CK to 0.28 ^t CK)								_				
	Non-cali- brated V _{REF}	^t PDA_H				minimum	n of 0.5UI				UI	22
DQ and DM minimum dat each input	a pulse width for	^t DIPW	0.58	_	0.58	_	0.58	-			UI	
		DQ	Output 1	liming (I	DLL enal	oled)						
DQS_t, DQS_c to DQ skew access	/, per group, per	^t DQSQ	-	0.18	-	0.19	-	0.20			UI	
DQ output hold time from		^t QH	0.74	_	0.72	_	0.70	_		1	UI	1

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

		DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	erved		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
Data Valid Window per device: ^t QH - ^t DQSQ each device's output per UI	^t DVW _d	0.64	-	0.64	-	0.64	-			UI	
Data Valid Window per device, per pin: ^t QH - ^t DQSQ each device's output per UI	^t DVW _p	0.72	-	0.72	-	0.72	_			UI	
DQ Low-Z time from CK_t, CK_c	^t LZDQ	-310	170	-280	165	-250	160			ps	
DQ High-Z time from CK_t, CK_c	^t HZDQ	-	170	-	165	-	160			ps	
		DQ Stro	be Inpu	t Timing		I			1		
DQS_t, DQS_c rising edge to CK_t, CK_c ris- ing edge for 1 ^t CK preamble	^t DQSS _{1ck}	-0.27	0.27	-0.27	0.27	-0.27	0.27			СК	
DQS_t, DQS_c rising edge to CK_t, CK_c ris- ing edge for 2 ^t CK preamble	^t DQSS _{2ck}	-0.50	0.50	-0.50	0.50	-0.50	0.50			СК	
DQS_t, DQS_c differential input low pulse width	^t DQSL	0.46	0.54	0.46	0.54	0.46	0.54			СК	
DQS_t, DQS_c differential input high pulse width	^t DQSH	0.46	0.54	0.46	0.54	0.46	0.54			СК	
DQS_t, DQS_c differential input high pulse width for 2 ^t CK preamble	^t DQSH2PRE	1.46	-	1.46	-	1.46	-			СК	
DQS_t, DQS_c falling edge setup to CK_t, CK_c rising edge for 1 ^t CK preamble	^t DSS _{1ck}	0.18	-	0.18	-	0.18	-			СК	
DQS_t, DQS_c falling edge setup to CK_t, CK_c rising edge for 2 ^t CK preamble	^t DSS _{2ck}	0	_	0	_	0	_			СК	
DQS_t, DQS_c falling edge hold from CK_t, CK_c rising edge for 1 ^t CK preamble	^t DSH _{1ck}	0.18	_	0.18	_	0.18	_			СК	
DQS_t, DQS_c falling edge hold from CK_t, CK_c rising edge for 2 ^t CK preamble	^t DSH _{2ck}	0	_	0	_	0	_			СК	
DQS_t, DQS_c differential WRITE preamble for 1 ^t CK preamble	^t WPRE _{1ck}	0.9	-	0.9	-	0.9	-			СК	
DQS_t, DQS_c differential WRITE preamble for 2 ^t CK preamble	^t WPRE _{2ck}	1.8	-	1.8	-	1.8	-			СК	
DQS_t, DQS_c differential WRITE postam- ble	^t WPST	0.33	_	0.33	_	0.33	-			СК	

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

			DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	rved		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
	·	DQS St	robe Out	out Timi	ng (DLL	enabled)					•
DQS_t, DQS_c rising edge c time from rising CK_t, CK_c		^t DQSCK	-170	170	-165	165	-160	160			ps	
DQS_t, DQS_c rising edge c window per DRAM	output variance	^t DQSCKi	-	270	-	265	_	260			ps	
DQS_t, DQS_c differential of time	output high	^t QSH	0.40	-	0.40	-	0.40	-			СК	
DQS_t, DQS_c differential of	output low time	^t QSL	0.40	_	0.40	_	0.40	-			СК	
DQS_t, DQS_c Low-Z time (RL - 1)	^t LZDQS	-310	170	-280	165	-250	160			ps	
DQS_t, DQS_c High-Z time	(RL + BL/2)	^t HZDQS	-	170	_	165	_	160			ps	
DQS_t, DQS_c differential F for 1 ^t CK preamble	READ preamble	^t RPRE _{1ck}	0.9	-	0.9	-	0.9	_			СК	20
DQS_t, DQS_c differential I for 2 ^t CK preamble	READ preamble	^t RPRE _{2ck}	1.8	_	1.8	-	1.8	_			СК	20
DQS_t, DQS_c differential F	READ postamble	^t RPST	0.33	-	0.33	-	0.33	-			CK	21
	1	Co	ommand	and Add	lress Tim	ing	L			I	1	
DLL locking time		^t DLLK	854	_	940	-	1024	-			CK	2, 4
CMD, ADDR setup time to	Base	^t IS	55	-	48	-	40	-			ps	
CK_t, CK_c referenced to V _{IH(AC)} and _{VIL(AC)} levels	V _{REFCA}	^t IS _{VREF}	145	-	138	_	130	_			ps	
CMD, ADDR hold time to	Base	^t IH	80	_	73	_	65	_			ps	
CK_t, CK_c referenced to V _{IH(DC)} and _{VIL(DC)} levels	V _{REFCA}	^t IH _{VREF}	145	_	138	_	130	-			ps	
CTRL, ADDR pulse width fo	or each input	^t IPW	385	_	365	_	340	-			ps	
ACTIVATE to internal READ	or WRITE delay	^t RCD			See S	beed Bin	Tables fo	r ^t RCD		I	ns	
PRECHARGE command per	iod	^t RP			See S	peed Bin	Tables fo	or ^t RP			ns	
ACTIVATE-to-PRECHARGE of period	command	^t RAS			See Sp	beed Bin	Tables fo	r ^t RAS			ns	12
ACTIVATE-to-ACTIVATE or period	REF command	^t RC			See S	peed Bin	Tables fo	or ^t RC			ns	12

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

		DDR4-2666	DDR4-2933	DDR4-3200	Rese	erved		
Parameter	Symbol	Min Max	Min Max	Min Max	Min	Мах	Unit	Notes
ACTIVATE-to-ACTIVATE command period to different bank groups for 1/2KB page size	^t RRD_S (1/2KB)	MIN = greater of 4CK or 3.0ns	MIN = greater of 4CK or 2.7ns	MIN = greater of 4CK or 2.5ns			СК	1
ACTIVATE-to-ACTIVATE command period to different bank groups for 1KB page size	^t RRD_S (1KB)	MIN = greater of 4CK or 3.0ns	MIN = greater of 4CK or 2.7ns	MIN = greater of 4CK or 2.5ns			СК	1
ACTIVATE-to-ACTIVATE command period to different bank groups for 2KB page size	^t RRD_S (2KB)	MIN = greater of 4CK or 5.3ns	MIN = greater of 4CK or 5.3ns	MIN = greater of 4CK or 5.3ns			СК	1
ACTIVATE-to-ACTIVATE command period to same bank groups for 1/2KB page size	^t RRD_L (1/2KB)	MIN = greater of 4CK or 4.9ns	MIN = greater of 4CK or 4.9ns	MIN = greater of 4CK or 4.9ns			СК	1
ACTIVATE-to-ACTIVATE command period to same bank groups for 1KB page size	^t RRD_L (1KB)	MIN = greater of 4CK or 4.9ns	MIN = greater of 4CK or 4.9ns	MIN = greater of 4CK or 4.9ns			СК	1
ACTIVATE-to-ACTIVATE command period to same bank groups for 2KB page size	^t RRD_L (2KB)	MIN = greater of 4CK or 6.4ns	MIN = greater of 4CK or 6.4ns	MIN = greater of 4CK or 6.4ns			СК	1
Four ACTIVATE windows for 1/2KB page ize	^t FAW (1/2KB)	MIN = greater of 16CK or 12ns	MIN = greater of 16CK or 10.875ns	MIN = greater of 16CK or 10ns			ns	
Four ACTIVATE windows for 1KB page size	^t FAW (1KB)	MIN = greater of 20CK or 21ns	MIN = greater of 20CK or 21ns	MIN = greater of 20CK or 21ns			ns	
Four ACTIVATE windows for 2KB page size	^t FAW (2KB)	MIN = greater of 28CK or 30ns	MIN = greater of 28CK or 30ns	MIN = greater of 28CK or 30ns			ns	
WRITE recovery time	^t WR _{1ck}		MIN	= 15ns			ns	1, 5, 9
	^t WR _{2ck}		MIN = 1C	K + ^t WR _{1ck}			СК	1, 5, 1
WRITE recovery time when CRC and DM are both enabled	^t WR_CRC_DM _{1ck}	MI	N = ^t WR _{1ck} + grea	ter of (5CK or 3.75	ins)		СК	1, 6, 9
WRITE recovery time when CRC and DM are both enabled	^t WR_CRC_DM _{2ck}		$MIN = 1CK + {}^{t}N$	WR_CRC_DM _{1ck}			CK	1, 6, 1
Delay from start of internal WRITE transac- tion to internal READ command – Same	^t WTR_L _{1ck}		MIN = greater	of 4CK or 7.5ns			CK	1, 5, 9
bank group	^t WTR_L _{2ck}		MIN = 1CK	+ ^t WTR_L _{1ck}			СК	1, 5, 1

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

		DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	rved		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
Delay from start of internal WRITE transac- tion to internal READ command – Same bank group when CRC and DM are both	^t WTR_L_CRC_D M _{1ck}		MIN	= ^t WTR_L	- _{1ck} + gre	eater of (5	5CK or 3.7	75ns)		СК	1, 6, 9
enabled	^t WTR_L_CRC_D M _{2ck}			MIN = 1	CK + ^t W	TR_L_CRC	_DM _{1ck}			СК	1, 6, 1
Delay from start of internal WRITE transac- tion to internal READ command – Different	^t WTR_S _{1ck}			MIN =	greater o	of (2CK or	[.] 2.5ns)			СК	1, 5, 7 8, 9
bank group	^t WTR_S _{2ck}			MI	N = 1CK	+ ^t WTR_S	1ck			СК	1, 5, 7 8, 10
Delay from start of internal WRITE transac- tion to internal READ command – Different bank group when CRC and DM are both enabled	^t WTR_S_CRC_D M _{1ck}		MIN	= ^t WTR_S	5 _{1ck} + gre	eater of (5	5CK or 3.7	75ns)		СК	1, 6, 7 8, 9
	^t WTR_S_CRC_D M _{2ck}			MIN = 1	CK + ^t W	TR_S_CRC	_DM _{1ck}			СК	1, 6, 7 8, 10
READ-to-PRECHARGE time	^t RTP			MIN =	greater	of 4CK or	r 7.5ns			СК	1
CAS_n-to-CAS_n command delay to differ- ent bank group	^t CCD_S	4	-	4	-	4	-			CK	
CAS_n-to-CAS_n command delay to same bank group	^t CCD_L	MIN = greater of 4CK or 5ns	-	MIN = greater of 4CK or 5ns	_	MIN = greater of 4CK or 5ns	_			СК	14
Auto precharge write recovery + pre- charge time	^t DAL (MIN)		MIN	= WR + R	OUND ^t R	P/ ^t ck (av	G); MAX	= N/A		СК	8
		MRS Co	mmand	Timing							
MRS command cycle time	^t MRD	8	-	8	-	8	-			СК	
MRS command cycle time in PDA mode	^t MRD_PDA			MIN =	greater o	of (16nCK	, 10ns)				1
MRS command cycle time in CAL mode	^t MRD_CAL			Ν	/IN = ^t M	OD + ^t CA	L			СК	
MRS command update delay	^t MOD			MIN =	greater	of (24nCK	(, 15ns)			СК	1
MRS command update delay in PDA mode	^t MOD_PDA				MIN =	^t MOD				СК	
MRS command update delay in CAL mode	^t MOD_CAL			Ν	/IN = ^t M	OD + ^t CA	L			СК	
MRS command to DQS drive in preamble training	^t SDO			I	MIN = ^t N	10D + 9ns	;				

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

		DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	rved		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Note
		MPR Co	mmand	Timing							
Multipurpose register recovery time	^t MPRR				MIN =	1nCK				CK	
Multipurpose register write recovery time	^t WR_MPR			М	IN = ^t MO	D + AL +	PL				
	CF	RC Error	Reporti	ng Timir	ng						•
CRC error to ALERT_n latency	^t CRC_ALERT	3	13	3	13	3	13			ns	
CRC ALERT_n pulse width	^t CRC_ALERT_PW	6	10	6	10	6	10			СК	
	11	CA P	arity Tir	ning			<u> </u>		<u> </u>	<u> </u>	1
Parity latency	PL	5	-	6	-	6	—			СК	
Commands uncertain to be executed during this time	^t PAR_UN- KNOWN	-	PL	-	PL	-	PL			СК	
Delay from errant command to ALERT_n assertion	^t PAR_ALERT_ON	-	PL + 6ns	_	PL + 6ns	-	PL + 6ns			СК	
Pulse width of ALERT_n signal when asserted	^t PAR_ALERT_PW	80	160	88	176	96	192			СК	
Time from alert asserted until DES com- mands required in persistent CA parity mode	^t PAR_ALERT_RS P	-	71	_	78	_	85			СК	
	· · · · ·	C	AL Timin	g			II		I	I	1
CS_n to command address latency	^t CAL	5	_	6	-	6	-			СК	19
CS_n to command address latency in gear-down mode	^t CALg	6	-	8	-	8	-			СК	
	· · · ·	M	PSM Tim	ing							•
Command path disable delay upopn MPSM entry	^t MPED			$MIN = {}^{t}N$	IOD (MIN	I) + ^t CPD	ED (MIN)			СК	1
Valid clock requirement after MPSM entry	^t CKMPE			$MIN = {}^{t}N$	IOD (MIN	I) + ^t CPD	ED (MIN)			СК	1
Valid clock requirement before MPSM exit	^t СКМРХ			Ν	/IN = ^t CK	SRX (MIN	1)			СК	1
Exit MPSM to commands not requiring a locked DLL	^t XMP				^t XS (MIN)				СК	
Exit MPSM to commands requiring a locked DLL	^t XMPDLL			MIN = ^t	KMP (MIN	I) + ^t XSD	LL (MIN)			СК	1

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

			DDR4	1-2666	DDR4	-2933	DDR	4-3200	Rese	erved		
Parameter		Symbol	Min	Мах	Min	Max	Min	Max	Min	Мах	Unit	Note
CS setup time to CKE		^t MPX_S			MIN	l = ^t IS (MI	N) + ^t IH (MIN)			ns	
CS_n HIGH hold time to CKI	E rising edge	^t MPX_HH				MIN	= ^t XP				ns	
CS_n LOW hold time to CKE	rising edge	^t MPX_LH	12	^t XMP-1 0ns	12	^t XMP-1 0ns	12	^t XMP-1 0ns			ns	
			Connect	ivity Tes	t Timing	9		11		1	1	1
TEN pin HIGH to CS_n LOW mode	– Enter CT	^t CT_Enable	200	-	200	-	200	-			ns	
CS_n LOW and valid input t	o valid output	^t CT_Valid	-	200	-	200	-	200			ns	
CK_t, CK_c valid and CKE H goes HIGH	IGH after TEN	^t CTCKE_Valid	10	-	10	_	10	-			ns	
Calibration and V _{REFDQ} T	rain Timing											
ZQCL command: Long cal- ibration time	POWER-UP and RESET operation	^t ZQinit	1024	-	1024	-	1024	-			СК	
	Normal oper- ation	^t ZQoper	512	-	512	-	512	-			СК	
ZQCS command: Short calib	pration time	^t ZQCS	128	_	128	-	128	_			СК	
The V _{REF} increment/decrem	nent step time	V _{REF_time}		II		MIN =	150ns	11		1		
Enter V _{REFDQ} training mode write or V _{REFDQ} MRS comm		^t VREFDQE				MIN =	150ns				ns	1
Exit V _{REFDQ} training mode t WRITE command delay	o the first	^t VREFDQX				MIN =	150ns				ns	1
		Initiali	zation a	nd Reset	Timing							
Exit reset from CKE HIGH to mand	o a valid com-	^t XPR				$MIN = {}^{t}RF$	-C1 + 10r	าร			ns	1
RESET_L pulse low after pov	wer stable	^t PW_RESET_S	1.0	-	1.0	-	1.0	-			μs	
RESET_L pulse low at power	r-up	^t PW_RESET_L	200	-	200	-	200	_			μs	
Begin power supply ramp t plies stable	o power sup-	^t VDDPR			N	11N = N/A;	MAX = 2	200			ms	
RESET_n LOW to power sup	oplies stable	^t RPS				MIN = 0;	MAX = 0)			ns	

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

			DDR4-	2666	DDR4	-2933	DDR4	4-3200	Rese	erved		
Parameter		Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Notes
			Refr	esh Tim	ing							
REFRESH-to-ACTIVATE or		^t RFC1				MIN =	= 260				ns	1, 11
REFRESH command period all bank groups)	4Gb	^t RFC2				MIN =	= 160				ns	1, 11
		^t RFC4				MIN =	= 110				ns	1, 11
		^t RFC1				MIN =	= 350				ns	1, 11
	8Gb	^t RFC2	-			MIN =	= 260				ns	1, 11
	-	^t RFC4				MIN =	= 160				ns	1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 11 11 11 11 11 11 11 11 11 11
		^t RFC1				MIN =	= 350				ns	
	16Gb	^t RFC2				MIN =	= 260				ns	1, 11
	-	^t RFC4				MIN =	= 160				ns	1, 11
Average periodic refresh nterval	-40°C ≤ T _C ≤ 85°C	^t REFI			М	IN = N/A;	MAX = 7	7.8			μs	1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 1, 11 11
	85°C < T _C ≤ 95°C	^t REFI			М	IN = N/A;	MAX = 3	3.9			μs	11
	95°C < T _C ≤ 105°C	^t REFI			MI	N = N/A;	MAX = 1	.95			μs	11
	11		Self Re	e fresh T i	iming							1
ixit self refresh to comman I locked DLL	ds not requiring	^t XS			٢	/IN = ^t RF	C1 + 10n	S			ns	1
xit self refresh to comman locked DLL in self refresh		^t XS_ABORT			٢	/IIN = ^t RF	C4 + 10n	S			ns	1
xit self refresh to ZQCL, ZOCL, COCL, COCL, COCL, COCL, COCL, WR, RTP and gea		^t XS_FAST			٢	/IIN = ^t RF	C4 + 10n	S			ns	1
Exit self refresh to commai ocked DLL	nds requiring a	^t XSDLL				MIN = ^t DI	LK (MIN	I)			СК	1
Minimum CKE low pulse w efresh entry to self refresh		^t CKESR			MIN	I = ^t CKE (MIN) + 1	nCK			СК	1
Minimum CKE low pulse w efresh entry to self refresh vhen CA parity is enabled		^t CKESR_par			MIN =	^t CKE (MI	N) + 1 <i>n</i> (CK + PL			СК	1, 11 1, 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 1 1 1 1 1 1 1

		DDR4	1-2666	DDR4	-2933	DDR4	1-3200	Rese	erved		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Max	Unit	Note
Valid clocks after self refresh entry (SRE) or power-down entry (PDE)	^t CKSRE			MIN	= greater	of (5CK,	10ns)			СК	1
Valid clock requirement after self refresh entry or power-down when CA parity is enabled	^t CKSRE_par			MIN = g	greater o	f (5CK, 10)ns) + PL			СК	1
Valid clocks before self refresh exit (SRX) or power-down exit (PDX), or reset exit	^t CKSRX			MIN	= greater	of (5CK,	10ns)			СК	1
		Powe	r-Down	Timing							
Exit power-down with DLL on to any valid command								СК	1		
Exit precharge power-down with DLL fro- zen to commands not requiring a locked DLL when CA Parity is enabled.	^t XP _PAR			MIN = (g	greater of	f 4CK or (6ns) + PL			СК	1
CKE MIN pulse width	^t CKE (MIN)			MIN :	= greater	of 3CK of	or 5ns			СК	1
Command pass disable delay	^t CPDED	4	-	4	_	4	-			СК	
Power-down entry to power-down exit timing	^t PD		1	MIN = ^t C	CKE (MIN)); MAX =	9 × ^t REFI	I	1	СК	
Begin power-down period prior to CKE registered HIGH	^t ANPD				WL ·	- 1CK				СК	
Power-down entry period: ODT either syn- chronous or asynchronous	PDE	Grea	ter of ^t Al	NPD or ^t R	FC - REFR	ESH com	mand to	CKE LOV	V time	СК	
Power-down exit period: ODT either syn- chronous or asynchronous	PDX				^t anpd -	+ ^t XSDLL				СК	
	Powe	r-Down	Entry Mi	nimum 1	Timing						
ACTIVATE command to power-down entry	^t ACTPDEN	2	-	2	-	2	-			СК	
PRECHARGE/PRECHARGE ALL command to power-down entry	^t PRPDEN	2	_	2	_	2	-			СК	
REFRESH command to power-down entry	^t REFPDEN	2	-	2	-	2	-			CK	
MRS command to power-down entry	^t MRSPDEN				MIN = ^t M	IOD (MIN	l)		1	СК	1
READ/READ with auto precharge com- mand to power-down entry	^t RDPDEN				MIN = R	L + 4 + 1				СК	1
WRITE command to power-down entry (BL8OTF, BL8MRS, BC4OTF)	^t WRPDEN			MIN =	WL + 4 +	- ^t WR/ ^t Ck	(AVG)			СК	1

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

		DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	erved		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	No
WRITE command to power-down entry (BC4MRS)	^t WRPBC4DEN			MIN =	WL + 2 +	- ^t WR/ ^t CK	(AVG)		·	СК	1
WRITE with auto precharge command to power-down entry (BL8OTF, BL8MRS,BC4OTF)	^t WRAPDEN			M	IN = WL +	- 4 + WR	+ 1			СК	1
WRITE with auto precharge command to power-down entry (BC4MRS)	^t WRAPBC4DEN			M	IN = WL +	- 2 + WR	+ 1			СК	1
		0	DT Timiı	ng							
Direct ODT turn-on latency	DODTLon			WL	- 2 = CWI	_ + AL + F	PL - 2			CK	
Direct ODT turn-off latency	DODTLoff			WL	- 2 = CWI	_ + AL + F	PL - 2			CK	
R _{TT} dynamic change skew	^t ADC	0.28	0.72	0.26	0.74	0.26	0.74			СК	
Asynchronous R _{TT(NOM)} turn-on delay (DLL off)	^t AONAS	1	9	1	9	1	9			ns	
Asynchronous R _{TT(NOM)} turn-off delay (DLL off)	^t AOFAS	1	9	1	9	1	9			ns	
ODT HIGH time with WRITE command and	ODTH8 1 ^t CK	6	-	6	-	6	-			СК	
BL8	ODTH8 2 ^t CK	7	-	7	_	7	-				
ODT HIGH time without WRITE command	ODTH4 1 ^t CK	4	_	4	_	4	-			СК	
or with WRITE command and BC4	ODTH4 2 ^t CK	5	_	5	_	5	_			-	
		Write L	eveling	Timing	<u> </u>	<u> </u>			1	1	1
First DQS_t, DQS_c rising edge after write leveling mode is programmed	^t WLMRD	40	-	40	-	40	-			СК	
DQS_t, DQS_c delay after write leveling mode is programmed	^t WLDQSEN	25	_	25	-	25	-			СК	
Write leveling setup from rising CK_t, CK_c crossing to rising DQS_t, DQS_c crossing	^t WLS	0.13	-	0.13	_	0.13	-			СК	
Write leveling hold from rising DQS_t, DQS_c crossing to rising CK_t, CK_c crossing	^t WLH	0.13	-	0.13	-	0.13	-			СК	
Write leveling output delay	^t WLO	0	9.5	0	9.5	0	9.5			ns	
Write leveling output error	^t WLOE	0	2	0	2	0	2			ns	

8Gb: x4, x8, x16 DDR4 SDRAM Refresh Parameters By Device Density

Table 167: Electrical Characteristics and AC Timing Parameters (Continued)

		DDR4	-2666	DDR4	-2933	DDR4	-3200	Rese	rved		
Parameter	Symbol	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit	Notes
Exit reset from CKE HIGH to a valid MRS gear-down	^t XPR_GEAR	^t X	^t XPR		PR	^t X	PR			СК	
CKE HIGH assert to gear-down enable time)	^t XS_GEAR	ť	^t XS		XS	ť	KS			CK	
MRS command to sync pulse time	^t SYNC_GEAR	^t MOD	^t MOD + 4CK		+ 4CK	^t MOD	+ 4CK			CK	
Sync pulse to first valid command	^t CMD_GEAR	^t M	OD	tM	OD	tM	OD			CK	
Gear-down setup time	^t GEAR_setup	2CK	-	2CK	-	2CK	-			CK	
Gear-down hold time	^t GEAR_hold	2CK	-	2CK	-	2CK	-			CK	

Notes: 1. Maximum limit not applicable.

- 2. Micron tDLLK values support the legacy JEDEC tDLLK specifications.
- 3. DDR4-1600 AC timing parameters apply if DRAM operates at lower than 1600 MT/s data rate.
- 4. Data rate is greater than or equal to 1066 Mb/s.
- 5. WRITE-to-READ when CRC and DM are both not enabled.
- 6. WRITE-to-READ delay when CRC and DM are both enabled.
- 7. The start of internal write transactions is defined as follows:
 - For BL8 (fixed by MRS and on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (on-the-fly): rising clock edge four clock cycles after WL
 - For BC4 (fixed by MRS): rising clock edge two clock cycles after WL
- 8. For these parameters, the device supports t nPARAM [nCK] = ROUND{ t PARAM [ns] t CK (AVG) [ns]} according to the rounding algorithms found in the Converting Time-Based Specifications to Clock-Based Requirements section, in clock cycles, assuming all input clock jitter specifications are satisfied.
- 9. When operating in 1^tCK WRITE preamble mode.
- 10. When operating in 2^tCK WRITE preamble mode.
- 11. When CA parity mode is selected and the DLLoff mode is used, each REF command requires an additional "PL" added to ^tRFC refresh time.
- 12. DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row address may result in reduction of the product lifetime and/or reduction in data retention ability.
- 13. Applicable from ${}^{t}CK$ (AVG) MIN to ${}^{t}CK$ (AVG) MAX as stated in the Speed Bin tables.
- 14. JEDEC specifies a minimum of five clocks.
- 15. The maximum read postamble is bound by ^tDQSCK (MIN) plus ^tQSH (MIN) on the left side and ^tHZ(DQS) MAX on the right side.
- 16. The reference level of DQ output signal is specified with a midpoint as a widest part of output signal eye, which should be approximately 0.7 × V_{DDO} as a center level of the static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to $V_{TT} = V_{DDO}$.
- 17. JEDEC hasn't agreed upon the definition of the deterministic jitter; the user should focus on meeting the total limit.

cron

vicron

- CCMTD-1725822587-9875 8gb_ddr4_dram.pdf Rev. T 09/2021 EN

- 18. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of ^tCK (AVG) as a long-term jitter component; however, the spread spectrum may not use a clock rate below ^tCK (AVG) MIN.
- 19. The actual ^tCAL minimum is the larger of 3 clocks or 3.748ns/^tCK; the table lists the applicable clocks required at targeted speed bin.
- 20. The maximum READ preamble is bounded by ^tLZ(DQS) MIN on the left side and ^tDQSCK (MAX) on the right side. See figure in the Clock to Data Strobe Relationship section. Boundary of DQS Low-Z occurs one cycle earlier in 2^tCK toggle mode, as illustrated in the READ Preamble section.
- 21. DQ falling signal middle-point of transferring from HIGH to LOW to first rising edge of DQS differential signal cross-point.
- 22. The ^tPDA S/^tPDA H parameters may use the ^tDS/^tDH limits, respectively, if the signal is LOW the entire BL8.

Clock Specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the MIN/MAX values may result in malfunction of the DDR4 SDRAM device.

Definition for ^tCK(AVG)

^tCK(AVG) is calculated as the average clock period across any consecutive 200-cycle window, where each clock period is calculated from rising edge to rising edge.

$$t_{CK(avg)} = \left(\sum_{j=1}^{N} t_{CK_j}\right) / N$$

Where N = 200

Definition for ^tCK(ABS)

^tCK(ABS) is defined as the absolute clock period as measured from one rising edge to the next consecutive rising edge. ^tCK(ABS) is not subject to a production test.

Definition for ^tCH(AVG) and ^tCL(AVG)

^tCH(AVG) is defined as the average high pulse width as calculated across any consecutive 200 high pulses.

$${}^{t}CH(AVG) = \left(\bigsqcup_{j=1}^{N} {}^{t}CH_{j} \right) / (N \times {}^{t}CK(AVG))$$

٨/

Where N = 200

 $^{t}CL(AVG)$ is defined as the average low pulse width as calculated across any consecutive 200 low pulses.

$${}^{t}CL(AVG) = \left(\bigsqcup_{j=1}^{N} {}^{t}CL_{j} \right) / (N \times {}^{t}CK(AVG))$$

Where N = 200

Definition for ^tJIT(per) and ^tJIT(per,lck)

^tJIT(per) is defined as the largest deviation of any signal ^tCK from ^tCK(AVG).

 t JIT(per) = MIN/MAX of { t CKi - t CK(AVG) where i = 1 to 200}.

^tJIT(per) defines the single period jitter when the DLL is already locked.

^tJIT(per,lck) uses the same definition for single period jitter, but only during the DLL locking period.

^tJIT(per) and ^tJIT(per,lck) are not subject to production test.

Definition for ^tJIT(cc) and ^tJIT(cc,lck)

^tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles.

 t JIT(cc) = MAX of $|\{^{t}$ CKi +1 - t CKi}|.

^tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.

^tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.

^tJIT(cc) and ^tJIT(cc,lck) are not subject to production test.

Definition for ^tERR(nper)

^tERR is defined as the cumulative error across *n* multiple consecutive cycles from ^tCK(AVG). ^tERR is not subject to a production test.

Jitter Notes

Note a: Unit ^tCK(AVG) represents the actual ^tCK(AVG) of the input clock under operation. Unit *n*CK represents one clock cycle of the input clock, including the actual clock edges. Example: ^tMRD = 4 [*n*CK] means that if one MODE REGISTER SET command is registered at Tm, another MODE REGISTER SET command may be registered at Tm + 4, even if (Tm + 4 - Tm) is ($4 \times {}^{t}CK(AVG) + {}^{t}ERR$ (4 per) MIN).

Note b: These parameters are measured from a command/address signal (such as CKE, CS_n, RAS_n, CAS_n, WE_n, ODT, BA0, A0, or A1) transition edge to its respective clock signal (CK_t/CK_c) crossing. The specification values are not affected by the amount of clock jitter applied (for example, ^tJITper, ^tJITcc) because the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.

Note c: These parameters are measured from a data strobe signal (DQS_t[L/U], DQS_c[L/U]) crossing to its respective clock signal (CK_t, CK_c) crossing. The specification values are not affected by the amount of clock jitter applied (for example, ^tJITper, ^tJITcc) because these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.

Note d: These parameters are measured from a data signal (such as DM[L/U], DQ[L/U]0, or DQ[L/U]1) transition edge to its respective data strobe signal ($DQS_t[L/U]$, $DQS_c[L/U]$) crossing.

Note e: For these parameters, the DDR4 SDRAM device supports ^t*n*PARAM [*n*CK] = RU[^tPARAM [ns]/^tCK(AVG) [ns]], which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support ^t*n*RP = RU [^tRP/^tCK(AVG)], which is in clock cycles, if all input clock jitter specifications are met. This means that for DDR4-800 6-6-6, ^tRP = 15ns, the device will support ^t*n*RP = RU[^tRP/^tCK(AVG)] = 6, as long as the input clock jitter specifications are met. For example, the PRECHARGE command at Tm and ACTIVE command at Tm + 6 is valid even if (Tm + 6 - Tm) is less than 15ns due to input clock jitter.

Note f: When the device is operated with input clock jitter, this parameter needs to be derated by the actual ^tERR(mper), act of the input clock, where $2 \le m \le 12$ (output deratings are relative to the SDRAM input clock). For example, if the measured jitter into a DDR4-800 SDRAM has ^tERR(mper), act, MIN = -172ps and ^tERR(mper), act, MAX = +193ps, then ^tDQSCK, MIN(derated) = ^tDQSCK, MIN - ^tERR(mper), act, MAX = -400ps - 193ps = -593ps and ^tDQSCK, MAX(derated) = ^tDQSCK, MAX - ^tERR(mper), act, MIN = 400ps + 172ps = 572ps. Similarly, ^tLZ(DQ) for DDR4-800 derates to ^tLZ(DQ), MIN(derated) = -800ps - 193ps = -993ps and ^tLZ(DQ), MAX(derated) = 400ps + 172ps = 572ps. Note that ^tERR(mper), act, MIN is the minimum measured value of ^tERR(nper) where $2 \le n \le 12$, and ^tERR(mper), act, MAX is the maximum measured value of ^tERR(nper) where $2 \le n \le 12$.

Note g: When the device is operated with input clock jitter, this parameter needs to be derated by the actual ^tJIT(per), act of the input clock (output deratings are relative to the SDRAM input clock). For example, if the measured jitter into a DDR4-800 SDRAM has ^tCK(AVG), act = 2500ps, ^tJIT(per), act, MIN

= -72ps and ^tJIT(per), act, MAX = +93ps, then ^tRPRE, MIN(derated) = ^tRPRE, MIN + ^tJIT(per), act, MIN = $0.9 \times {}^{t}CK(AVG)$, act + ^tJIT(per), act, MIN = $0.9 \times 2500ps - 72ps = 2178ps$. Similarly, ^tQH, MIN(derated) = ^tQH, MIN + ^tJIT(per), act, MIN = $0.38 \times {}^{t}CK(AVG)$, act + ^tJIT(per), act, MIN = $0.38 \times 2500ps - 72ps = 878ps$.

Converting Time-Based Specifications to Clock-Based Requirements

Software algorithms for calculation of timing parameters are subject to potential rounding errors when converting DRAM timing requirements to system clocks; for example, a memory clock with a nominal frequency of 933.33...3 MHz which yields a clock period of 1.071428571429...ns. It is unrealistic to represent all digits after the decimal point exactly and some sort of rounding needs to be done.

DDR4 SDRAM SPD-based specifications use a minimum granularity for SPD-associated timing

parameters of 1ps. Clock periods such as ^tCK (AVG) MIN are defined to the nearest picosecond. For example, 1.071428571429...ns is stated as 1071ps. Parameters such as ^tAA MIN are specified in units of time (nanoseconds) and require mathematical computation to convert to system clocks (nCK). Rules for rounding allow optimization of device performance without violating device parameters. These SPD algorithms rely on results that are within nCK adjustment factors on device testing and specification to avoid losing performance due to rounding errors when using SPD-based parameters. Note that JEDEC also defines an nCK adjustment factor, but mandates the inverse nCK adjustment factor be used in case of conflicting results, so only the inverse nCK adjustment factor is discussed here.

Guidance converting SPD associated timing parameters to system clock requirements:

- Round the application clock period up to the nearest picosecond.
- Express the timing specification and application clock period in picoseconds; scaling a nanosecond-based parameter value by 1000 allows programmers to use integer math instead of real math by expressing timing in ps.
- Divide the picosecond-based parameter by the picoseconds based application clock period.
- Add an inverse *n*CK adjustment factor of 97.4%.
- Truncate down to the next lower integer value.
- $nCK = Truncate[(parameter in ps)/(application {}^{t}CK in ps) + (974/1000)].$

Guidance converting nonSPD associated timing parameters to system clock requirements:

- Divide the time base specification (in ns) and divided by the clock period (in ns).
- The resultant is set to the next higher integer number of clocks.
- nCK = Ceiling[(parameter in ns/application ^tCK in ns)].

Options Tables

Table 168: Options – Speed Based

Function	Acronym	Data Rate						
		1600	1866	2133	2400	2666	2933	3200
Write leveling	WL	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Temperature controlled refresh	TCR	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Low-power auto self refresh	LPASR	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fine granularity refresh	FGR	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Multipurpose register	MR	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Data mask	DM	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Data bus inversion	DBI	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TDQS	_	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ZQ calibration	ZQ CAL	Yes	Yes	Yes	Yes	Yes	Yes	Yes
V _{REFDQ} calibration	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Per-DRAM addressability	Per DRAM	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Mode register readout	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Command/Address latency	CAL	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Write CRC	CRC	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CA parity	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Gear-down mode	-	No	No	No	No	Yes	Yes	Yes
Programmable preamble	_	No	No	No	Yes	Yes	Yes	Yes
Maximum power saving mode	MPSM	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Additive latency	AL	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Connectivity test mode	СТ	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hard post package repair mode	hPPR	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Soft post package repair mode	sPPR	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MBIST-PPR	MBIST-PPR	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Table 169: Options – Width Based

Function	Acronym	Width					
		x4	x8	x16			
Write leveling	WL	Yes	Yes	Yes			
Temperature controlled refresh	TCR	Yes	Yes	Yes			
Low-power auto self refresh	LPASR	Yes	Yes	Yes			
Fine granularity refresh	FGR	Yes	Yes	Yes			
Multipurpose register	MR	Yes	Yes	Yes			
Data mask	DM	Νο	Yes	Yes			
Data bus inversion	DBI	Νο	Yes	Yes			
TDQS	-	Νο	Yes	No			
ZQ calibration	ZQ CAL	Yes	Yes	Yes			
V _{REFDQ} calibration	-	Yes	Yes	Yes			
Per-DRAM addressability	Per DRAM	Yes	Yes	Yes			
Mode regsiter readout	_	Yes	Yes	Yes			
Command/Address latency	CAL	Yes	Yes	Yes			
Write CRC	CRC	Yes	Yes	Yes			
CA parity	-	Yes	Yes	Yes			
Gear-down mode	-	Yes	Yes	Yes			
Programmable preamble	-	Yes	Yes	Yes			
Maximum power-down mode	MPSM	Yes	Yes	Yes			
Additive latency	AL	Yes	Yes	Yes			
Connectivity test mode	СТ	JEDEC optional on 80 Micron supports	Yes				
Hard post package repair mode	hPPR	JEDEC optional on 4Gb Micron supports on all densities					
Soft post package repair mode	sPPR	JEDEC optional on 4Gb and 8Gb Micron supports on all densities					
MBIST-PPR	MBIST-PPR	JEDEC optional Micron supports only on 8Gb Die Rev R and 16Gb Die Rev F					

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006 208-368-4000, micron.com/support

Micron and the Micron logo are trademarks of Micron Technology, Inc.

All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.

Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.