
HMC6343 3-axis Compass Hookup Guide




Introduction
The HMC6343 is a fully-integrated, high-end, digital compass module that
can compute and give the user a heading direction that’s accurate within a
couple degrees! It is tilt compensated and is calibrated to handle magnetic
distortions. The IC combines 3-axis magneto-resistive sensors and 3-axis
MEMS accelerometers, analog and digital support circuits, a
microprocessor and algorithms in firmware required for heading
computation.

The breakout board allows for easy use of the HMC6343. All that is
required is power (3.3V @ 4.5mA in run mode) and I2C connections to a
microcontroller so that the module can receive commands and send data
back to the user.

Covered in this Tutorial

In this tutorial, we will help you learn how to use this electronic compass so
you can quickly and painlessly integrate them into your project[s]. Here is
what we’ll cover:

• Hardware Overview – An overview of the HMC6343 breakout board
as well as some details about the IC.

• Example Hookup – How to connect the compass to the ubiquitous
Arduino so we can start writing code to work with it.

• Example Code – We’ve written example sketches and a library that
demonstrate how to collect sensor data as well as make sense of it.

Page 1 of 7

Required Materials

• HMC6343 Breakout Board
• Arduino Uno or any Arduino Board– We will use the Uno as the

example, however you should be able to use any Arduino board you
have handy including the RedBoard, Pro, Mega, etc.

• Bi-directional Logic Level Converter

You may also need a breadboard, jumper wires, and straight male headers
to follow the example setup, if you don’t already have these or another way
of connecting the Arduino to the breakout board.

Suggested Reading

Before continuing on with this tutorial, we recommend you be somewhat
familiar with the concepts in these tutorials:

• Installing an Arduino Library
• Inter-IC Communication (I C)
• Logic Levels
• Bi-Directional Level Shifter Hookup Guide

Hardware Overview
The Breakout Board for the HMC6343 breaks out the all the pins you’ll
need to send commands and collect data from the electronic compass.

As you can see, the breakout has only four pins broken out. Two are for
power, 3.3V and GND. Two are for I2C communication, SCL (clock) and
SDA (data).

Voltage Supply Requirements

The big alert here is that the HMC6343 has an input voltage range of
2.7V - 3.6V – that range applies to both the power supply and the I2C lines.
You can use a 5V or 3.3V micro with this sensor as long as you power the
board with 3.3V and use a logic level converter for the I2C lines if you’re
using a 5V micro like the Arduino Uno.

Fortunately, you don’t need a lot of power to make the HMC6343 work. In
the normal operating mode, the IC typically draws about 4.5mA. It draws
even less current in standby (1mA) or sleep (10µA) modes.

Extra Hardware Notes

2

Page 2 of 7

The HMC6343 can measure and compute a heading direction every 200ms
(5Hz). Being able to easily acquire a tilt compensated heading direction
accurate within a couple degrees without having your microprocessor
spend a lot of time on computation is the highlight of this IC. However, you
can read raw magnetometer and accelerometer values if needed.

The HMC6343 has two mounting holes to allow for a secure physical
connection to your project. You certainly don’t want the board
moving/twisting around independently of your system if you’re depending
on it to give you a sense of direction.

Also, there is a solder jumper on the top of the board that is closed by
default so that the I2C lines have 10KΩ pull-up resistors. If you want to use
a different values for your I2C pull-ups, you can disconnect these default
resistors by removing the solder from the jumper.

Example Hookup

Soldering

Before you can plug your compass breakout board into a breadboard and
connect it to anything, you’ll need to solder connectors or wires to the
breakout pins. What you solder to the board depends on how you’re going
to use it.

If you’re going to use the breakout board in a breadboard or similar
0.1"-spaced perfboard, we recommend soldering straight male headers into
the pins (there are also long headers if you need).

If you’re going to mount the breakout into a tight enclosure, you may want
to solder wires (stranded or solid-core) directly into the pins.

Simple Hookup

This example will use an Arduino Uno to collect and interpret the sensor
data from the HMC6343. Since the sensor uses I2C communication, all we
need are two connections, one for a clock (SCL) and one for data (SDA) in
addition to two for power (3.3V and GND).

We simply have to supply the accelerometer with power (3.3V and GND),
then hookup the I2C connections. The HMC6343 IC has a max rating of
3.6V on any pin so in order to talk to the HMC6343 with the Arduino Uno or
any other 5V microcontroller, we will need a bi-directional logic level
converter for the I2C lines.

The following tables shows the connections made for using the HMC6343
breakout with an Arduino Uno and logic level converter.

HMC6343 BreakoutLogic Level ConverterArduino Uno
3.3V LV 3.3V
GND GND GND
N/A HV 5V
SDA <--- LV1 HV1 ---> SDA(A4)
SCL <--- LV2 HV2 ---> SCL(A5)

Set up this way, I2C communication will be 3.3V on the breakout board side
and 5V on the Arduino Uno side. If this is your first time using a logic level
converter, or the above table seems confusing, check out our tutorial on
logic levels and the hookup guide for the logic level converter. That should
clear up any confusion with your setup before proceeding to the code
examples.

Example Code

Page 3 of 7

Now that your electronic compass breakout is electrically connected to your
Arduino, it’s time to dive into the code. The full library
(SFE_HMC6343_Library) and example sketches can be found in the github
repository. If you need help with GitUb, visit our tutorial. The same goes for
installing an Arduino library.

Once the library is installed, open the example labeled
HMC6343_basics.ino. This sketch will teach you how to get a heading
direction, pitch, and roll angles as well as accelerometer measurements.

The first lines of this example sketch include the necessary libraries, one for
I2C and the other so we can declare and interact with the compass object.

// Libraries for I2C and the HMC6343 sensor
#include <Wire.h>
#include "SFE_HMC6343.h"

SFE_HMC6343 compass; // Declare the sensor object

The variable compass will be used for all interactions with the sensor itself.

Next we use the setup() function in initialize serial communication and the
HMC6343. If the HMC6343 is not detected, an error message will be
reported to the Serial Monitor. We also wait half a second before we try to
initialize the HMC6343 since it takes that long to be responsive after being
powered on.

void setup()
{
// Start serial communication at 115200 baud

 Serial.begin(115200);

// Give the HMC6343 a half second to wake up
delay(500);

// Initialize the HMC6343 and verify its physical presence
if (!compass.init())

 {
 Serial.println("Sensor Initialization Failed\n\r"); // Rep
ort failure, is the sensor wiring correct?
 }
}

In the loop() function, we call two functions to read the sensor data and
two more to print the data to the Serial Monitor in an easily readable format.
compass.readHeading() is a library function that commands the sensor to

collect heading direction, pitch angle, and roll angle and then store these
values. We will see how to use and print these values in the
printHeadingData() function. compass.readAccel() gets a reading from

the IC’s 3-axis accelerometer values and these are used and printed in
printAccelData() . Here is the loop in full:

Page 4 of 7

void loop()
{
// Read, calculate, and print the heading, pitch, and roll f

rom the sensor
 compass.readHeading();
printHeadingData();

// Read, calculate, and print the acceleration on the x, y,
and z axis of the sensor
 compass.readAccel();
printAccelData();

// Wait for two seconds
delay(2000); // Minimum delay of 200ms (HMC6343 has 5Hz sens

or reads/calculations)
}

After calling compass.readHeading() , the variables compass.heading ,
compass.pitch , and compass.roll carry the heading, pitch, and roll

values given by the sensor in tenths of degrees. In the
printHeadingData() function, we print these raw values and also print the

value converted to degrees. Let’s look at how we do this using the heading
direction as an example:

Serial.print("Heading: ");
Serial.print(compass.heading); Serial.print(" "); // Print ra
w heading value
Serial.print((float) compass.heading/10.0);Serial.write(176);S
erial.println(); // Print heading in degrees

In the first line, we print the label. In the second line, we print the actual raw
value returned by the sensor, compass.heading and a couple spaces. In
the third line, we scale the heading direction by dividing it by 10 so that we
can print it in degrees. Serial.write(176) draws a degree symbol and
then we print a new line.

Within printHeadingData() , the same process is followed for pitch and
roll. When running the program, the Serial Monitor’s output of this function
will look like the following:

Heading Data (Raw value, in degrees):
Heading: 3249 324.90°
Pitch: 28 2.80°
Roll: 24 2.40°

If you have the breakout board parallel to the ground, pitch and roll will be
about 0 degrees and you will see the heading angle change as you slowly
rotate the board. Try angling the board relative to the X and Y axis and see
how that affects your pitch and roll angles.

Printing accelerometer values is very similar. Under the printAccelData()
function, we print the acceleration measured on the x axis as follows:

Serial.print("X: ");
Serial.print(compass.accelX); Serial.print(" "); // Print ra
w acceleration measurement on x axis
Serial.print((float) compass.accelX/1024.0);Serial.println
("g"); // Print x axis acceleration measurement in g forces

Again, in the first line we print the label. On the second line, we print the
raw acceleration measurement felt on the x axis using the variable
compass.accelX . Acceleration measurements for y and z are accessed

with the variables compass.accelY and compass.accelZ respectively. On

Page 5 of 7

the third line above, we scale the raw value by dividing it by 1024 to get the
accleration in g forces. We print that scaled value as well as the unit
symbol, g.

Here an example of what you’ll see in the Serial Monitor after calling the
printAccelData() function:

Accelerometer Data (Raw value, in g forces):
X: ­52 ­0.05g
Y: ­44 ­0.04g
Z: ­1047 ­1.02g

At the end of loop() there is a delay of two seconds before new sensor
data is read and printed. The fastest you can consecutively acquire new
sensor readings is 5Hz or every 200ms.

Advanced Features

All the additional features of the HMC6343 device library are covered in the
HMC6343_advanced sketch. However, I’ll overview some of the more

appealing features here.

If you want to save power, you’ll want to be able to use the sleep or standby
modes. The IC in standby draws 1.0mA as opposed to 4.5mA under normal
run mode operation. Under sleep mode, the IC only uses 10µA however it
takes the device longer to wake up after entering that low power state. Here
are examples of how the two modes can be entered and exited:

// Enter and exit standby mode (4.5mA draw in run mode, 1.0mA
in standby)
// HMC6343 requires 1 ms before it can receive commands after
switching modes
compass.enterStandby();
delay(1);
compass.exitStandby(); // Exit standby, enter run mode (defaul
t)
delay(1);

// Enter and exit sleep mode (4.5mA draw in run mode, 10uA in
sleep)
// HMC6343 requires 1ms after entering sleep and 20ms after ex
iting before it's able to receive new commmands
compass.enterSleep();
delay(1);
compass.exitSleep();
delay(20);

If you don’t want to mount the HMC6343 breakout board parallel to the
ground, then you’ll need to know how to set the new orientation of the
board in order to get correct heading, pitch, and roll values. Here is a list of
the three possible orientations and the command to configure the
HMC6343 to use a new orientation:

// Possible orientations:
// LEVEL X = forward, +Z = up (default)
// SIDEWAYS X = forward, +Y = up
// FLATFRONT Z = forward, ­X = up
compass.setOrientation(LEVEL);
delay(1); // 1 ms before sensor can receive commands after se
tting orientation

Those are the most important additional features. However, the advanced
example covers reading/printing raw 3-axis magnetometer values and raw
‘tilt’ values (pitch, roll, and temperature). It also covers reading the primary

Page 6 of 7

status register (OPMode1) as well as reading and writing to the EEPROM
registers of the sensor. There is also a command to reset the processor of
the HMC6343 as well as a way to enter and exit user calibration mode.

While the library provides a convenient way to do all these things (every
HMC6343 command in the datasheet is used by the library), if you want to
know the details of each EEPROM register or how to properly calibrate the
sensor, consulting the datasheet is a must.

My hope is that the library allows you to read sensor data and interact with
the HMC6343 as easily as possible and allows you to quickly integrate the
breakout board into your project.

Resources & Going Further
Thanks for reading! By now you’ve become familiar with both the hardware
and software to use the HMC6343, the high end electronic compass. We’re
excited to see what you build with this. The following resources may be
helpful for you when building your related projects:

• HMC6343 Datasheet
• HMC6343 Github Repository
• Using Github
• You could make a robot like the HUB-ee Buggy or the RedBot, and

give it a sense of direction with the HMC6343.
• You could make a multitude of autonomous vehicles, and enter it in

the SparkFun Autonomous Vehicle Competition (AVC).

Page 7 of 7

11/12/2015https://learn.sparkfun.com/tutorials/hmc6343-3-axis-compass-hookup-guide?_ga=1.3888...

