Is Now Part of # ON Semiconductor® To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo FJP5304D NPN Silicon Transistor #### July 2008 ### **High Voltage High Speed Power Switch Application** - Wide Safe Operating Area - Built-in Free Wheeling diodeSuitable for Electronic Ballast Application - Suitable for Electronic Ballast Application - Small Variance in Storage Time ### Absolute Maximum Ratings T_C=25°C unless otherwise noted | Symbol | Parameter | Value | Units | | |------------------|--|------------|-------|--| | V _{CBO} | Collector-Base Voltage | 700 | V | | | V _{CEO} | Collector-Emitter Voltage | 400 | V | | | V _{EBO} | Emitter-Base Voltage | 12 | V | | | I _C | Collector Current (DC) | 4 | Α | | | I _{CP} | * Collector Current (Pulse) | 8 | Α | | | I _B | Base Current (DC) | 2 | Α | | | I _{BP} | * Base Current (Pulse) | 4 | Α | | | P _C | Collector Dissipation (T _C =25°C) | 70 | W | | | T _{STG} | Storage Temperature | - 65 ~ 150 | °C | | ^{*} Pulse Test Pulse Width = 5ms, Duty Cycle \geq 1.0% ### Electrical Characteristics T_C=25°C unless otherwise noted | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Units | |-------------------|-------------------------------------|---|------|------|------|-------| | BV _{CBO} | Collector-Base Breakdown Voltage | $I_{C} = 1 \text{mA}, I_{E} = 0$ | 700 | | | V | | BV _{CEO} | Collector-Emitter Breakdown Voltage | $I_{C} = 5mA, I_{B} = 0$ | 400 | | | V | | BV _{EBO} | Emitter-Base Breakdown Voltage | $I_{E} = 1 \text{mA}, I_{C} = 0$ | 12 | | | V | | I _{CES} | Collector Cut-off Current | $V_{CE} = 700V, V_{EB} = 0$ | | | 100 | mA | | I _{CEO} | Collector Cut-off Current | V _{CE} = 400V, IB = 0 | | | 250 | mA | | I _{EBO} | Emitter Cut-off Current | V _{EB} = 12V, I _C = 0 | | | 100 | mA | | h _{FE} | DC Current Gain | $V_{CE} = 5V$, $I_C = 10$ mA
$V_{CE} = 5V$, $I_C = 2$ A | 10
8 | | 40 | | |-----------------------|--|--|---------|-----|-------------------|----| | V _{CE} (sat) | Collector-Emitter Saturation Voltage | $I_C = 0.5A, I_B = 0.1A$
$I_C = 1A, I_B = 0.2A$
$I_C = 2.5A, I_B = 0.5A$ | | | 0.7
1.0
1.5 | V | | V _{BE} (sat) | Base-Emitter Saturation Voltage | $I_C = 0.5A, I_B = 0.1A$
$I_C = 1A, I_B = 0.2A$
$I_C = 2.5A, I_B = 0.5A$ | | | 1.1
1.2
1.3 | V | | V _f | Internal Diode Forward Voltage Drop | I _F = 2A | | | 2.5 | V | | Inductive L | oad Switching (V _{CC} = 200V) | | | | | | | t _{stg} | Storage Time | $I_C = 2A$, $I_{B1} = 0.4A$ | | 0.6 | | μS | | tf | Fall Time | $V_{BE}(off) = -5V, L = 200\mu H$ | | 0.1 | | | | Resistive L | oad Switching (V _{CC} = 250V) | | | | | • | | t _{stg} | Storage Time | $I_C = 2A$, $I_{B1} = I_{B2} = 0.4A$ | | | 2.9 | μS | | tf | Fall Time | T _P = 30μs | | 0.2 | | | ^{*} Pulse test: PW \leq 300 μ s, Duty cycle \leq 2% ### **Thermal Characteristics** | Symbol | Parameter | Max. | Units | |-----------------|---|------|-------| | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 1.78 | °C/W | | $R_{ heta JA}$ | Thermal Resistance, Junction to Ambient | 62.5 | °C/W | ## **Typical Characteristics** Figure 1. Static Characteristic Figure 2. DC Current Gain Figure 3. Collector-Emitter Saturation Voltage Figure 4. Base-Emitter Saturation Voltage Figure 5. Resitive Load Switching Time Figure 6. Inductive Load Switching Time ## Typical Characteristics (Continued) Figure 1. Forward Bias Safe Operating Area Figure 2. Reverse Bias Safe Operating Area Figure 3. Power Derating ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative