
 

www.ams.com Revision  1.0 / 2014/06/05 page 1/11 

 

      
TMG399x Reference Code Programmer’s Guide 

 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 2/11 

Table of Contents  

1 General Description ............................................................................................................. 3 

1.1 Reference Code Content ..................................................................................................... 3 

2 Evaluation Platforms ............................................................................................................ 3 

3 Software Description ............................................................................................................ 3 

4 Data Types Used ................................................................................................................. 4 

4.1 Basic Data Types ................................................................................................................. 4 

4.2 Gesture Data Structures and Definitions ............................................................................. 4 

4.2.1 NSWE_t ............................................................................................................................... 5 

4.2.2 gestureRawDataState_t ....................................................................................................... 5 

4.2.3 adaptiveRawData_t .............................................................................................................. 5 

4.3 gestureRawData_t ............................................................................................................... 5 

4.3.1 RawDataArray_t ................................................................................................................... 6 

4.3.2 algStatusData_t .................................................................................................................... 6 

5 Interfacing with the Kernel Driver ......................................................................................... 7 

5.1 The gesture_data ABI .......................................................................................................... 7 

5.2 The gesture_calibrate ABI ................................................................................................... 7 

5.3 Other ABIs ............................................................................................................................ 8 

6 Interfacing with Gesture Library ........................................................................................... 8 

6.1 Passing data to the Gesture Library .................................................................................... 8 

6.1.1 Do_Raw_Gesture_Data ....................................................................................................... 9 

6.2 Receiving data/requests from the Gesture Library .............................................................. 9 

6.2.1 Do_Gesture_Long_Pushed_Event ...................................................................................... 9 

6.2.2 Do_Gesture_Long_Held_Event ......................................................................................... 10 

6.2.3 Do_Gesture_End_Event .................................................................................................... 10 

6.2.4 Do_Gesture_Long_Released_Event ................................................................................. 10 

6.2.5 Request_Recal_GOffset_Register ..................................................................................... 10 

6.2.6 Request_Visible_Data_Mode ............................................................................................ 11 

 

Revision History 

Revision  Date Owner  Description  

1.0 2014.06.05  Initial Release 

 

  



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 3/11 

1 General Description 
This document describes the programming interface for version 2.0.8 of the reference software for 

use with the ams TMG399x family of ALS-Color-Proximity-Gesture-IRBeam devices. 

 

An understanding of the hardware operation of the TMG399x is necessary but is outside the scope 
of this document. Refer to the datasheet for detailed hardware descriptions. 

1.1 Reference Code Content 

The reference code consists of three basic portions: a Linux kernel driver, a Linux user space library 
to decode gestures, and a demo-only server program which demonstrates how to transfer data from 
the kernel driver into the library and then reports the results, either as a textual log, or by creating 
Linux keyboard events to simulate the detected gestures. It has been tested on three different 
Android platforms. It is expected that it can equally well be used on a pure Linux platform, though 

ams has not tested it that way. 

 

2 Evaluation Platforms 
The code has been built for, and successfully tested on, the following platforms: 

• Arndale Board (Samsung Exynos 5250 SoC) running Android 4.1.1 

• Beaglebone Black (TI Sitara AM335x SoC) running Android 4.2.2 

• DragonBoard (Qualcomm Snapdragon 8074 SoC) running Android 4.2.2 

 

The Beaglebone Black is recommended as the primary standard development board.  This 
reference code release includes all the files needed to operate on both the Beaglebone Black and 
the Arndale.  The DragonBoard implementation requires some additional files from Intrinsyc, the 
board maker, and therefore is not entirely supported using only the release. 

3 Software Description 
The basic arrangement of the software is shown in Figure 1. A Linux kernel driver, registered as an 
input driver, comes up via the standard .probe() etc. sequence under the control of the Linux input 
subsystem. The user space server is started either manually or via a Linux automatic launching 
facility of your choice, then communicates with the driver via Application Binary Interfaces (ABIs) in 
the form of sysfs files (special files in the /sys tree). The ABIs provided by the driver are described 
in a separate document - TMG399x Device Driver v2.0.8 ABI Descriptions 

 

The main focus of the demo server is gestures. Detected gestures are reported as Linux keyboard 
input events and are thus available to all Linux and Android apps. In the demo server, Ambient Light 
Sensing (ALS) output is written to a log file and optionally printed to the console but is not 
propagated up to Android apps.  Proximity output is only written to the log file.  The driver supports 
IRBeam functionality but the demo server does not.   



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 4/11 

 

Figure 1 Software Architecture 

4 Data Types Used 
To interface with the kernel and the gesture library, a program requires several basic data types, 
derived from standard Linux definitions and several enumerations and structures which are defined 
by the gesture library code. 

4.1 Basic Data Types 

The basic data types used to interface with the kernel driver and gesture library are derived from 
standard Linux definitions. The types listed in the following table are part of the standard Linux 
distribution: 

Type Name Description Source 

int32_t A 32-bit integer value <stdint.h> 

struct timespec A structure for storing accurate 
time values. 

<time.h> 

 

For convenience, the glcommon.h file defines additional basic types that are used by all of the 
gesture library code: 

Type Name Declaration 

i32 typedef int32_t i32; 

u8 typedef unsigned char u8; 

DateTime_t typedef struct timespec DateTime_t; 

TimeSpan_t typedef struct timespec TimeSpan_t; 

4.2 Gesture Data Structures and Definitions 

The following data structures are defined and used by the gesture library code. 

gesture library  main.c  tmg3992 Kernel Driver  

Driver Functions 

Offset Calibration and 
Threshold Adaption 

Algorithms 

ABIs Demo 
Server 

Gesture Data 
Processing 

Gesture Vector 
Processing 

Gesture Event 
Processing 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 5/11 

4.2.1 NSWE_t 

The NSWE_t structure is used to store a single set of North/South/West/East values from the 
TMG399x hardware. Although the hardware only produces 8-bit values, for ease of use, they are 
stored and passed as 32-bit integers. This structure is declared in glcommon.h. 

typedef struct 
{ 
    i32 North;  /* north gesture data */ 
    i32 South;  /* south gesture data */ 
    i32 West;   /* west gesture data */ 
    i32 East;   /* east gesture data */ 
} NSWE_t; 

4.2.2 gestureRawDataState_t 

gestureRawDataState_t is an enumeration that the threshold adaption code in the kernel driver 
uses to communicate the state of the data collection to the gesture library. For various historical 
reasons, some of these values are obsolete and no longer used, but are maintained so that the 
actual enumeration values remain unchanged. This enumeration is declared in glcommon.h. 

typedef enum 
{ 
    idle,     /* no gesture processing active */ 
    started,  /* gesture collection continuing (alr eady started) */ 
    tEntry,   /* New gesture collection has begun * / 
    entry,    /* unused */ 
    tEnded,   /* collection of current gesture has ended */ 
    ended     /* unused */ 
} gestureRawDataState_t; 

4.2.3 adaptiveRawData_t 

adaptiveRawData_t is part of the data structure that is passed out of the kernel mode driver. It is a 
subset of the data that is used by the gesture library. This structure is declared in glcommon.h. 

typedef struct 
{ 
    gestureRawDataState_t state;  /* state indicati on */ 
    NSWE_t NSWE;                  /* raw gesture da ta */ 
    i32 GProx;                    /* gesture prox v alue */ 
    i32 Count;                    /* counter value of gesture packet */ 
} adaptiveRawData_t; 

4.3 gestureRawData_t 

gestureRawData_t is a superset of the adaptiveRawData_t data structure. When passing the data 
to the gesture library, the user program must copy the existing data from the adaptiveRawData_t 
structure into the gestureRawData_t structure and fill in the additional time value. This structure is 
declared in glcommon.h. 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 6/11 

typedef struct 
{ 
    gestureRawDataState_t State;  /* state indicati on */ 
    DateTime_t Time;              /* timestamp for this sample */ 
    NSWE_t NSWE;                  /* raw gesture da ta */ 
    i32 GProxMax;                 /* gesture prox v alue */ 
    i32 Count;                    /* counter value of gesture packet */ 
} gestureRawData_t; 

4.3.1 RawDataArray_t 

RawDataArray_t is passed from the gesture library when a gesture has been detected. This 
structure contains all of the data that was collected for the gesture and certain summary information 
that applies to the raw data. This structure is declared in glcommon.h. 

#define RAW_DATA_ARRAY_LENGTH  100 
 
typedef struct 
{ 
    DateTime_t Start_Time;  /* time of 1st point in  gesture */ 
    i32 Peak_GProx_Index;   /* gprox value at gestu re peak */ 
    i32 Count;              /* Num of datapoints rc vd (can be >100) */ 
    i32 Length;             /* Real length of RawDa ta array (<=100) */ 
    NSWE_t NSWE_Offset;     /* DC Offsets applied t o this gesture */ 
    NSWE_t NSWE_Scale100;   /* Scale value * 100 fo r this gesture */ 
    gestureRawData_t RawData[RAW_DATA_ARRAY_LENGTH] ;  /* all points */ 
    i32 Next_Long_Time;     /* next gesture button push time */ 
    i32 Long_Count;         /* number of long count s */ 
} RawDataArray_t; 

The data in the RawDataArray_t structure can be used to determine the type and characteristics of 
the detected gesture. This can then be used to generate system events to report the gestures or to 
simply display the gesture information in a log message. 

4.3.2 algStatusData_t 

algStatusData_t is the complete data structure which is passed from the kernel driver to the user 
program via the gesture_data ABI. This structure is declared in main.c 

typedef struct 
{ 
    adaptiveRawData_t gRawData; 
    bool gRawDataValid;          /* true = pass dat a to library */ 
    u8 prox_entry_baseline10;   /* baseline value u sed in calc'ing */ 
                                /* entry threshold,  in tenths */ 
    u8 prox_entry_stdev10;      /* std. dev. value used in calc'ing */ 
                                /* entry threshold,  in tenths */ 
    u8 prox_entry_threshold;    /* gesture prox ent ry threshold */ 
    u8 gesture_exit_threshold;  /* gesture exit thr eshold */ 
    NSWE_t gesture_offset;      /* DC offsets appli ed to raw data */ 
    bool doOffsetCalibration;   /* true = offset ca l should be done */ 
    bool doGestureDcInit;       /* internal flag fo r gesture cal */ 
    bool doProxDcInit;          /* internal flag fo r DC cal */ 
} algStatusData_t; 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 7/11 

5 Interfacing with the Kernel Driver 
This document will not deal with the specifics of the entire set of driver ABIs. These are already 
described in a separate document - TMG399x Device Driver v2.0.8 ABI Descriptions. Instead, this 
document will deal only with the ABIs used by the demo server. 

 

The demo server devotes about 300 lines of code to ascertain, at runtime, the proper directory 
paths for the ABI files.  For example, the path /sys/class/input/input1/als_power_state may change 
to …/input0/… or …/input2/… if a different number of other input devices are ever enabled before 
the ALS device. If your platform never varies in the number of input devices, using constant path 
strings is an acceptable alternative. 

5.1 The gesture_data ABI 

Unlike most ABIs, the gesture_data ABI does not use ASCII text strings, but uses binary data. This 
is done because each gesture sample, when present, requires a large amount of data. When the 
gesture_data ABI is opened and read, the first byte returned is a count of the number of 
algStatusData_t data structures that are present or 0 if no data is present. Each data structure 
represents 1 gesture data sample collected by the TMG399x hardware. The user program should 
read all of the available data at once.  Up to 32 algStatusData_t data structures can be returned by 
each open/read/close operation. An example of reading data from the gesture_data ABI follows: 

#define MAX_NUM_DATASETS 32 
struct algStatusData valid_raw_gester_datasets[MAX_ NUM_DATASETS]; 
 
int ges_raw_data_fd; 
u8 count; 
 
/* open the gesture_data ABI */ 
ges_raw_data_fd = open(ges_raw_data_path, O_RDONLY) ; 
if(ges_raw_data_fd > 0) 
{ 
    /* find out how much data is present (maybe non e */ 
    read(ges_raw_data_fd, &count, sizeof(unsigned c har)); 
    /* obtain any data in one read operation */ 
    if (count > 0) 
    { 
        lseek(ges_raw_data_fd, 1, SEEK_SET); 
        read(ges_raw_data_fd, 
             valid_raw_gester_datasets, 
             (count * sizeof(struct algStatusData)) ); 
    } 
    close(ges_raw_data_fd); 
} 

5.2 The gesture_calibrate ABI 

While processing gesture information, the gesture library code may determine that it is necessary to 
recalibrate the TMG399x offset registers. The gesture_calibrate ABI is used to trigger a new offset 
calibration by the kernel driver. When a calibration is required, the demo server writes a single “1” 
value to the gesture_calibration ABI as follows: 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 8/11 

FILE *fd; 
 
fd = fopen(ges_calibrate_path, "w"); 
if (fd != NULL) 
{ 
    fprintf(fd, "%d\n", 1); 
    fclose(fd); 
} 

5.3 Other ABIs 

The following ABIs are read by the demo server only to display information in a log file or on the 
console display: prx_raw, als_red, als_green, als_blue, als_clear, als_lux, and als_cct. These ABIs 
are described in the TMG399x Device Driver v2.0.8 ABI Descriptions document. The demo server 
reads a single value from each ABI as follows: 

i32 prox = -1; 
FILE *fd; 
 
fd = fopen(prox_raw_path, "r"); 
if (fd != NULL) 
{ 
    fscanf(fd, "%d", &prox); 
    fclose(fd); 
} 

6 Interfacing with Gesture Library 
The gesture library is structured so that it can be implemented in a variety of architectures. In 
systems with enough capacity, the gesture library code can be integrated with and called directly 
from the kernel driver code, eliminating the need to buffer the data. The reference code samples 
implement the gesture library separate from the driver code and then provide a demo program to 
show how to pass data from the driver to the library and report the results of the library processing. 
The reference driver also contains an ABI which allows the demo program to create input keystroke 
events in response to detected gestures. This ABI is intended for demonstration purposes only and 
is not intended to be the final method for communicating gesture information to other applications or 
to the operating system. 

 

The server plays the role of a datapump between the driver and the library. Operations that need 
OS services, such as file I/O (including the ABI files) or console output, should also be implemented 
here. 

 

The library has one input method, Do_Raw_Gesture_Data. It expects the server to provide several 
output methods it can call back to, detailed in paragraph 6.2. The library is single-threaded, so a call 
to Do_Raw_Gesture_Data cannot return until any callback functions have returned. 

6.1 Passing data to the Gesture Library 

Once gesture data is obtained from the kernel driver it must be passed, one sample at a time to the 
gesture library code. Reading data from the gesture_driver ABI is described in paragraph 5.1 
above. Once the data has been read, the user program must timestamp each sample and then 
pass it to the library code as follows: 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 9/11 

gestureRawData_t RawData; 
NSWE_t dcOffset; 
u8 gexth; 
 
for (i = 0; i < count; i++) 
{ 
    RawData.State = valid_raw_gester_datasets[i].gR awData.state; 
    RawData.NSWE = valid_raw_gester_datasets[i].gRa wData.NSWE; 
    RawData.GProxMax = valid_raw_gester_datasets[i] .gRawData.GProx; 
    RawData.Count = valid_raw_gester_datasets[i].gR awData.Count; 
    clock_gettime(CLOCK_REALTIME, &(RawData.Time));  
    dcOffset = valid_raw_gester_datasets[i].gesture _offset; 
    gexth = valid_raw_gester_datasets[i].gesture_ex it_threshold; 
    Do_Raw_Gesture_Data(&RawData, &dcOffset, gexth) ; 
} 

6.1.1 Do_Raw_Gesture_Data 

Do_Raw_Gesture_Data is the functional interface for passing data into the gesture library (as 
shown in paragraph 6.1 above).  Call Do_Raw_Gesture_Data once for each gesture sample 
received. 

void Do_Raw_Gesture_Data(gestureRawData_t *RawData,  
                         NSWE_t *dcOffset, 
                         u8 gexth); 

where: 

RawData contains the adaptiveRawData_t  data from the gesture_data ABI and a 
 timestamp added by the user, 

dcOffset is copied from the gesture_data ABI, 

gexth is copied from the gesture_data ABI. 

6.2 Receiving data/requests from the Gesture Librar y 

The user server program must provide 6 functions which will be called by the Gesture Library code 
to communicate the detection of various gesture conditions or to request that certain calibration 
steps be performed. Each of these functions must be implemented, even if you choose to ignore the 
event by simply returning from the function. 

6.2.1 Do_Gesture_Long_Pushed_Event 

When a gesture exceeds 300 ms, it is classified as a “button push event”. When the gesture library 
initially detects this long event it will call the Do_Gesture_Long_Pushed_Event function. If the 
server program does not wish to provide button functionality, it can ignore this call simply by 
returning from the function. 

void Do_Gesture_Long_Pushed_Event(RawDataArray_t *r da); 

where: 

 rda is the array of gesture data for this gesture. 

Do_Gesture_Long_Pushed_Event is called once for each detected long gesture. 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 10/11 

6.2.2 Do_Gesture_Long_Held_Event 

If a long gesture that has been detected and reported via the Do_Gesture_Long_Pushed_Event 
function continues, it will be reported by calling Do_Gesture_Long_Held_Event periodically (every 
300 ms) as a “button hold event”. It will continue to be reported until either the gesture ends or the 
gesture becomes so long that it is considered erroneous (approximately 2 seconds), in which case it 
will then be aborted. 

void Do_Gesture_Long_Held_Event(RawDataArray_t *rda ); 

where: 

 rda is the array of gesture data for this gesture. 

Do_Gesture_Long_Held_Event can be called multiple times for each detected long gesture. If the 
server program does not wish to provide button functionality, it can ignore this call simply by 
returning from the function. 

6.2.3 Do_Gesture_End_Event 

When the end of each normal gesture is detected, the gesture is reported by calling the 
Do_Gesture_End_Event function.  This function is not called for long gestures (see paragraph 6.2.4 
for this case). 

PLEASE NOTE: In version 2.0.8 of the reference code , this function was 
inadvertently implemented inside the gesture library file named 
gesture_event.c. This will be corrected in the next  software release and 
Do_Gesture_End_Event will be moved out of the libra ry file. 

void Do_Gesture_End_Event(RawDataArray_t *rda); 

where: 

 rda is the array of gesture data for this gesture. 

Do_Gesture_End_Event is called once for each detected gesture. 

6.2.4 Do_Gesture_Long_Released_Event 

When a long gesture ends normally (it is not aborted) it is considered to be a “button release event” 
and is reported by calling the Do_Gesture_Long_Released_Event function. 

void Do_Gesture_Long_Released_Event(RawDataArray_t *rda); 

where: 

 rda is the array of gesture data for this gesture. 

Do_Gesture_Long_Released_Event can be called once for each detected long gesture. It will not 
be called if a long gesture is aborted. If the server program does not wish to provide button 
functionality, it can ignore this call simply by returning from the function. 

6.2.5 Request_Recal_GOffset_Register 

Various conditions, such as an object placed close to the sensor, or dirt/oil/makeup on the glass 
over the sensor can cause continuous, erroneous, gestures to be detected.  When this condition 
occurs, the gesture library will request a recalibration operation for the gesture offset registers in the 
TMG399x hardware. It does this by calling the Request_Recal_GOffset_Register function. 

void Request_Recal_GOffset_Register(void); 



 

TMG399x Reference Code Programmer’s Guide 

www.ams.com Revision  1.0 / 2014/06/05 page 11/11 

This function should pass the request to the kernel driver via the gesture_calibrate ABI as shown in 
paragraph 5.2. 

6.2.6 Request_Visible_Data_Mode 

This function has been deprecated and will be removed in the next software release. For this 
version, this function should simply return without performing any action. 

void Request_Visible_Data_Mode(void); 

 


