First Edition Apr 18, 2005 # **LCD Module Technical Specification** Final Revision F-51854GNFJ-SLW-ABN Type No. m Spatsutes Approved by (Quality Assurance Division) Checked by (ACI Engineering Division) T.Yuchi Prepared by (ACI Engineering Division) **Table of Contents** 1. General Specifications2 4. I/O Terminal _______10 **Revision History** Page Comment Rev. Date OPTREX CORPORATION Page 1/18 F-51854GNFJ-SLW-ABN (AB) No. 2005-0333 ## 1.General Specifications Operating Temp. : min. -20°C ~max. 70°C Storage Temp. : min. -20°C ~max. 70°C Dot Pixels : 160 (W) × 128 (H) dots Dot Size : 0.54 (W) × 0.54 (H) mm Dot Pitch : $0.58 \text{ (W)} \times 0.58 \text{ (H)} \text{ mm}$ Viewing Area : $108.6 (W) \times 82.55 (H) mm$ Outline Dimensions : $129.0 (W) \times 102.0^* (H) \times 13.5 max. (D) mm$ * Without FPC Weight : 160g max. LCD Type : NSD-22808 (F-STN / Black &White-mode / Transflective) Viewing Angle : 6:00 Data Transfer : 8-bit parallel data transfer Backlight : LED Backlight / White Additional Spec. : Winter White Display (Highly Reflective Type Transflective Display) Drawing : Dimensional Outline UE-211023A RoHS regulation : To our best knowledge, this product satisfies material requirement of RoHS regulation. Our company is doing the best efforts to obtain the equivalent certificate from our suppliers. ## 2. Electrical Specifications ### 2.1. Absolute Maximum Ratings Vss=0V | Parameter | Symbol | Conditions | Min. | Max. | Units | |----------------|----------------------|------------|------|---------|-------| | Supply Voltage | V _{DD} -Vss | - | -0.3 | 6.0 | V | | (Logic) | | | | | | | Supply Voltage | V3, Vouт | - | -0.3 | +18.0 | V | | (LCD Drive) | | | | | | | Supply Voltage | V1, V2, VC, | - | -0.3 | V3 | V | | (LCD Drive) | MV1, MV2 | | | | | | Input Voltage | Vin | - | -0.3 | Vpp+0.3 | V | | | | | | | | | Output Voltage | Vouт | - | -0.3 | Vpp+0.3 | V | | | | | | | | ^{*1:}Voltages V₃, V₂, V₁, VC, MV₁, MV₂ and MV₃(Vss) must always meet the conditions of $V_3 \ge V_2 \ge V_1 \ge V_2 \ge MV_1 \ge MV_2 \ge MV_3 (Vss)$. When inputting Vou⊤ from outside, maintain the condition of Vou⊤≥3+0.2V. #### 2.2.DC Characteristics Ta=25°C, Vss=0V | Parameter | Symbol | Conditions | | Min. | Тур. | Max. | Units | |-------------------|------------------|---------------------------|----|------------------|------|---------|-------| | Supply Voltage | VDD-VSS | - | | 4.5 | - | 5.5 | V | | (Logic) | | | | | | | | | Supply Voltage | Vouт | - | | V _{DD2} | - | 16.2 | V | | (LCD Drive) | Vз | | | 5.6 | - | 16.2 | | | Supply Voltage | V _{DD2} | With Triple(Based on VDD) | | 4.5 | - | 5.3 | V | | (Booster Circuit) | | | | | | | | | Booster Output | Vоит | - | | - | - | 16.2 | V | | Voltage | | | | | | | | | Voltage Regulator | Vз | | *1 | 5.6 | - | 16.2 | V | | Operating Voltage | | | | | | | | | "High" Level | Vih | VDD=4.5~5.5V | | 0.8×VDD | - | Vdd | V | | Input Voltage | | | *2 | | | | | | "Low" Level | VIL | VDD=4.5~5.5V | | Vss | - | 0.2×Vdd | V | | Input Voltage | | | *2 | | | | | | "High" Level | Vон | VDD=4.5~5.5V | | 0.8×VDD | - | Vdd | V | | Output Voltage | | Іон=-25µА *3 | | | | | | | "Low" Level | Vol | VDD=4.5~5.5V | | Vss | - | 0.2×VDD | V | | Output Voltage | | loL=25μA *3 | | | | | | | Supply Current | ldd | VDD-Vss=5.0V | | - | 1.2 | 1.8 | mA | | | | | | | | | | | Oscillation | fc∟ | | | 92 | 100 | 108 | kHz | | Frequency | | | | | | | | ^{*1:} The V₃ voltage adjusting circuit is adjusted within the electronic volume operating range. ^{*2:}Voltage Vout must always meet the conditions of Vout≥Vdd. These ranges are applied when using the external power supply. ^{*2:} A0, D0~D7, RD, WR CS1, CS2, RES pins ^{*3:} D0~D7 #### 2.3.AC Characteristics ## 2.3.1.Read/Write Operation Sequence (80 series CPU) VDD=4.5~5.5V | Parameter | | Symbol | Min. | Max. | Units | |--------------------------|-------|-------------------------|------|------|-------| | Address Hold Time | | t _{AH8} | 0 | - | ns | | Address Setup Time | | t _{AW8} | 0 | - | ns | | System Write Cycle Time | | t _{wcyc8} | 500 | | ns | | System Read Cycle Time | | t _{RCYC8} | 7000 | - | ns | | Control Low Pulse Width | WRITE | t _{CCLW} | 200 | - | ns | | | READ | t _{CCLR} | 3000 | - | ns | | Control High Pulse Width | WRITE | t cchw | 200 | - | ns | | | READ | t cchr | 200 | - | ns | | Data Setup Time | | t _{DS8} | 200 | - | ns | | Data Hold Time | | t _{DH8} | 30 | - | ns | | RD Access Time(CL=100pF |) | t _{ACC8} | - | 3500 | ns | | Output Disable Time | | t _{OH8} | 5 | 200 | ns | ^{*1:}This is in case of making the access by \overline{WR} and \overline{RD} , setting the \overline{CS} =LOW. ^{*2:}This is in case of making the access by $\overline{\text{CS}}$, setting the $\overline{\text{WR}}$, $\overline{\text{RD}}$ =LOW. ^{*3:} Input signal rise and fall time (tr, tf) must not exceed 15 ns. When the system cycle time is used at a high speed, it is specified by (tr+tf)≤(tcγca-tcclw-tccнw) or (tr+tf)≤(tcγca-tcclr-tccнr). ^{*4:}Timing is entirely specified with reference to 20% or 80 % of VDD. ^{*5:}tcclw and tcclr are specified in terms of the overlapped period when \overline{CS} is at LOW level and \overline{WR} and \overline{RD} are at LOW level. ^{*1:}This is in case of making the access by $\overline{\text{WR}}$ and $\overline{\text{RD}}$, setting the $\overline{\text{CS}}$ =LOW. ^{*2:} This is in case of making the access by CS, setting the WR, RD=LOW. ## 2.3.2. Display Control Timing Characteristics **Reset Input Timing** $V_{DD}=4.5\sim5.5V$ | Parameter | Symbol | Min. | Тур. | Max. | Units | |-----------------------|-----------------------|------|------|------|-------| | Reset time | t _R | - | - | 1000 | | | Reset "L" Pulse Width | \mathbf{t}_{RW} | 1000 | - | - | μs | ^{*1:} Timing is entirely specified with reference to 20% or 80% of VDD. ## 2.4. Lighting Specifications ## 2.4.1. Absolute Maximum Ratings Ta=25°C | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |-----------------------|------------|------------|------|------|------|-------| | Foward Current | l F | Note 1 | ı | ı | 360 | mA | | Reverse Voltage | VR | - | ı | 1 | 5 | V | | LED Power Dissipation | PD | - | ı | - | 1440 | mW | Note 1 : Refer to the foward current derating curve. ## 2.4.2. Operating Characteristics | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |----------------|--------|------------|------|------|------|-------------------| | Foward Voltage | VF | l=180mA | ı | 3.5 | 4.0 | V | | Luminance of | L | l=180mA | 28 | 40 | - | cd/m ² | | Module Surface | | | | | | | ### 3. Optical Specifications (MLA Driving) ### 3.1. Optical Characteristics Ta=25°C, 1/65 Duty, 1/8 Bias, VoD=10.1V (Note 4), θ = 0°, ϕ =- ° | Pa | rameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |-------------|--------------|--------|--------------|---------|-------|------|-------| | Contrast Ra | atio Note 1 | CR | θ= 0°, φ=- ° | ı | 5.0 | ı | | | Viewing Ang | gle | | | Shown i | n 3.2 | | | | Response | Rise Note 2 | Ton | - | ı | 125 | 200 | ms | | Time | Decay Note 3 | Toff | - | - | 200 | 300 | ms | Note 1 :Contrast ratio is definded as follows.(CR = LOFF / LON) LON: Luminance of the ON segments LOFF: Luminance of the OFF segments Measuring Spot: 3.0mm Note 2 :The time that the luminance level reaches 90% of the saturation level from 0% when ON signal is applied. Note 3 :The time that the luminance level reaches 10% of the saturation level from 100% when OFF signal is applied. Note 4 : Definition of Driving Voltage Vod Assuming that the typical driving waveforms shown below are applied to the LCD Panel at 1/A Duty - 1/B Bias (A: Duty Number, B: Bias Number). Driving voltage VoD is definded as follows. Vop = (Vth1+Vth2) / 2 Vth1: The voltage Vo-P that should provide 70% of the saturation level in the luminance at the segment which the ON signal is applied to. Vth2: The voltage Vo-P that should provide 20% of the saturation level in the luminance at the segment which the OFF signal is applied to. ### 3.2. Definition of Viewing Angle and Optimum Viewing Area - *Point shows the point where contrast ratio is measured. : θ = 0°, ϕ =-° - *Driving condition: 1/65 Duty, 1/8 Bias, VoD=10.1V, fF=72Hz *Area shows typ. CR≥2.5(Measuring Spot : 3.0mm ø) ## 3.3. System Block Diagram ## 4.I/O Terminal ## 4.1. Pin Assignment ## <u>CN1</u> | No. | Symbol | Function | |-----|---------|---| | 1 | CS1 | Chip Select Signal L : Active(Upper Display) | | 2 | CS2 | Chip Select Signal L : Active(Lower Display) | | 3 | RES | Reset Signal L: Reset | | 4 | A0 | H : D0~D7 are Display Data L : D0~D7 are Instructions | | 5 | WR | 80 family CPU : Write Signal L : Active | | 6 | RD | 80 family CPU : Read Signal L : Active | | 7 | D0 | Display Data | | 8 | D1 | Display Data | | 9 | D2 | Display Data | | 10 | D3 | Display Data | | 11 | D4 | Display Data | | 12 | D5 | Display Data | | 13 | D6 | Display Data | | 14 | D7 | Display Data | | 15 | Vss | Power Supply (0V, GND) | | 16 | VDD | Power Supply for Logic | | 17 | Vоит *1 | Monitor Terminal for DC/DC Voltage Converter Output | | 18 | V3 *1 | Monitor Terminal for LCD Driving Voltage | | 19 | LED +A | LED Anode Terminal | | 20 | LED -K | LED Cathode Terminal | ^{*1:}Normally, No connection(NC) to the pin 17 and the pin 18 for operation. ### 5.Test No change on display and in operation under the following test condition. Conditions: Unless otherwise specified, tests will be conducted under the following condition. Temperature: 20±5°C Humidity: 65±5%RH tests will be not conducted under functioning state. | No. | Parameter | Conditions | Notes | |-----|----------------------------|---|-------| | 1 | High Temperature Operating | 70°C±2°C, 96hrs (operation state) | | | 2 | Low Temperature Operating | -20°C±2°C, 96hrs (operation state) | 1 | | 3 | High Temperature Storage | 70°C±2°C, 96hrs | 2 | | 4 | Low Temperature Storage | -20°C±2°C, 96hrs | 1,2 | | 5 | Damp Proof Test | 40°C±2°C,90~95%RH, 96hrs | 1,2 | | 6 | Vibration Test | Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz | 3 | | | | One cycle 60 seconds to 3 directions of X, Y, Z for each 15 minutes | | | 7 | Shock Test | To be measured after dropping from 60cm high on the concrete surface in packing state. Dropping method comer dropping A corner: once Edge dropping B,C,D edge: once Face dropping E,F,G face: once | | Note 1: No dew condensation to be observed. Note 2 :The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after removed from the test chamber. Note 3: Vibration test will be conducted to the product itself without putting it in a container. ### 6. Appearance Standards ### 6.1. Inspection conditions The LCD shall be inspected under 40W white fluorescent light. The distance between the eyes and the sample shall be more than 30cm. All directions for inspecting the sample should be within 45° against perpendicular line. ### 6.2. Definition of applicable Zones X: Maximum Seal Line A Zone: Active display area B Zone : Out of active display area ~ Maximum seal line C Zone : Rest parts A Zone + B Zone = Validity viewing area ## 6.3. Standards (middle scale, LED) D = (Long + Short) / 2 *: Disregard Units: mm | No. | Parameter | | | Criteria | | |-----|------------------|------------------------|--|--------------------|---| | 1 | The Shape of Dot | (1) Pin Hole | | | | | | | \ <u>\</u> | Dimensio | Ac | ceptable Number | | | | | D ≤ 0 | 10 | * | | | | | 0.10 < D ≤ 0. | 20 | ot(only segment)or less
rell or less | | | | (2) Breakage o | r Chips / Defor | nation | | | | | 1.0 | ot Type | | | | | | | Dimension | Accep | table Number | | | | A
→ ← | A≤0.10 | | * | | | | | | (Should not be | connected to next dot) | | | | | | 1 pc / dot(only | segment)or less | | | | ├ | 0.10 <a≤0.15< td=""><td>5 pcs / cell or le</td><td>ess</td></a≤0.15<> | 5 pcs / cell or le | ess | | | | | | (Should not be | connected to next dot) | | | | | B ≤ 0.15 | | * | | | | 2.0 | Defective type e | ctends over mul | tiple numbers of dots | | | | | Dimension | Accep | table Number | | | | | D≤0.10 | | * | | | | 1+44 | | 1 pc / dot(only | segment)or less | | | | ' → ← | | 5 pcs / cell or le | ess | | | | | 0.10 <d≤0.20< td=""><td>Individual dot m</td><td>nust secure 1/2 area</td></d≤0.20<> | Individual dot m | nust secure 1/2 area | | | | | | or more) | | | | | | | • | | | No. | Parameter | | C | Criteria | | | |-----|--|--|--|---|-----------------------------------|--------------------| | 2 | Black and | (1) Round Sha | ре | | | | | | White Spots, | | Zone | Acc | eptable Numb | oer | | | Foreign Substances | Dimension | | Α | В | С | | | | | D ≤ 0.10 | * | * | * | | | | 0.10< | D ≤ 0.20 | 6 | 6 | * | | | | 0.20< | D ≤ 0.30 | 4 | 4 | * | | | | Individual do (2) Line Shape | t must secure 1/2 | area or more | e. | | | | | (_) | Zone | Acc | eptable Numb | oer | | | | Length | Width | A | В | C | | | | * | W≤0.03 | * | * | * | | | | L ≤2.0 | 0.03 <w≤0.05< td=""><td>5</td><td>5</td><td>*</td></w≤0.05<> | 5 | 5 | * | | | | L ≤1.0 | ≤0.10 | 4 | 4 | * | | | | * | 0.10 <w< td=""><td></td><td>ne way (1)</td><td>*</td></w<> | | ne way (1) | * | | | 0.1. 77 : 17 | · | mplex Foreign Su | bstance De | fects") | | | 3 4 | Color Variation Air Bubbles (between glass & polarizer) | Dimension 0.30< 0.40< | zone $D \le 0.30$ $D \le 0.40$ $D \le 0.60$ | | eptable Numb B * 3 | per C * | | | Air Bubbles
(between glass | Dimension 0.30< 0.40< No more tha | spicuous defects. Zone $D \le 0.30$ $D \le 0.40$ | Acc
A
*
3
2 | eptable Numb
B
*
* | C
* | | | Air Bubbles
(between glass | Dimension 0.30< 0.40< No more that (Refer to "Co | zone $D \le 0.30$ $D \le 0.40$ $D \le 0.60$ $D \le 0.60$ $D \le 0.60$ | Acc
A
*
3
2 | eptable Numb
B
*
* | C
* | | 4 | Air Bubbles (between glass & polarizer) | Dimension 0.30< 0.40< No more that (Refer to "Co | spicuous defects. Zone $D \le 0.30$ $D \le 0.40$ $D \le 0.60$ n 3pcs as total. Implex Foreign Su | Acc A * 3 2 | eptable Numb B * 3 fects") | * * | | 5 | Air Bubbles (between glass & polarizer) Polarizer Scratches | Dimension 0.30< 0.40< No more that (Refer to "Co" Not to be constituted in the stains are not defective. | zone | Acc A * 3 2 abstance Def | eptable Numb B * 3 fects") | C * * module is | | 5 6 | Air Bubbles (between glass & polarizer) Polarizer Scratches Polarizer Dirts | Dimension 0.30< 0.40< No more that (Refer to "Co" Not to be considered in the stains are not defective. Black spots, line | Zone Zone D ≤ 0.30 D ≤ 0.40 D ≤ 0.60 n 3pcs as total. Implex Foreign Suspicuous defects. e removed easily | Acc A * 3 2 substance Definition LCDP substances | eptable Numb B * * 3 fects") | C * * module is | OPTREX CORPORATION Page 15/18 F-51854GNFJ-SLW-ABN (AB) No. 2005-0333 ## 7.Code System of Production Lot The production lot of module is specified as follows. ## 8.Type Number The type number of module is specified as follows. #### F-51854GNFJ-SLW-ABN ### 9. Applying Precautions Please contact us when questions and/or new problems not specified in this Specifications arise. ### 10.Precautions Relating Product Handling The Following precautions will guide you in handling our product correctly. - 1) Liquid crystal display devices - 1. The liquid crystal display device panel used in the liquid crystal display module is made of plate glass. Avoid any strong mechanical shock. Should the glass break handle it with care. - 2. The polarizer adhering to the surface of the LCD is made of a soft material. Guard against scratching it. - 2) Care of the liquid crystal display module against static electricity discharge. - 1. When working with the module, be sure to ground your body and any electrical equipment you may be using. We strongly recommend the use of anti static mats (made of rubber), to protect work tables against the hazards of electrical shock. - 2. Avoid the use of work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers. - 3. Slowly and carefully remove the protective film from the LCD module, since this operation can generate static electricity. - 3) When the LCD module alone must be stored for long periods of time: - 1. Protect the modules from high temperature and humidity. - 2. Keep the modules out of direct sunlight or direct exposure to ultraviolet rays. - 3. Protect the modules from excessive external forces. - 4) Use the module with a power supply that is equipped with an overcurrent protector circuit, since the module is not provided with this protective feature. - 5) Do not ingest the LCD fluid itself should it leak out of a damaged LCD module. Should hands or clothing come in contact with LCD fluid, wash immediately with soap. - 6) Conductivity is not guaranteed for models that use metal holders where solder connections between the metal holder and the PCB are not used. Please contact us to discuss appropriate ways to assure conductivity. - 7) For models which use CFL: - 1. High voltage of 1000V or greater is applied to the CFL cable connector area. Care should be taken not to touch connection areas to avoid burns. - 2. Protect CFL cables from rubbing against the unit and thus causing the wire jacket to become worn. - 3. The use of CFLs for extended periods of time at low temperatures will significantly shorten their service life. - 8) For models which use touch panels: - 1. Do not stack up modules since they can be damaged by components on neighboring modules. - 2. Do not place heavy objects on top of the product. This could cause glass breakage. - 9) For models which use COG, TAB, or COF: - 1. The mechanical strength of the product is low since the IC chip faces out unprotected from the rear. Be sure to protect the rear of the IC chip from external forces. - 2. Given the fact that the rear of the IC chip is left exposed, in order to protect the unit from electrical damage, avoid installation configurations in which the rear of the IC chip runs the risk of making any electrical contact. - 10) Models which use flexible cable, heat seal, or TAB: - 1. In order to maintain reliability, do not touch or hold by the connector area. - 2. Avoid any bending, pulling, or other excessive force, which can result in broken connections. - 11) In case of buffer material such as cushion / gasket is assembled into LCD module, it may have an adverse effect on connecting parts (LCD panel-TCP / HEAT SEAL / FPC / etc., PCB-TCP / HEAT SEAL / FPC etc., TCP-HEAT SEAL, TCP-FPC, HEAT SEAL-FPC, etc.,) depending on its materials. Please check and evaluate these materials carefully before use. 12) In case of acrylic plate is attached to front side of LCD panel, cloudiness (very small cracks) can occur on acrylic plate, being influenced by some components generated from polarizer film.. Please check and evaluate those acrylic materials carefully before use. ### 11.Warranty This product has been manufactured to your company's specifications as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems, or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required. If the product is to be used in any of the above applications, we will need to enter into a separate product liability agreement. - We cannot accept responsibility for any defect, which may arise from additional manufacturing of the product (including disassembly and reassembly), after product delivery. - 2. We cannot accept responsibility for any defect, which may arise after the application of strong external force to the product. - We cannot accept responsibility for any defect, which may arise due to the application of static electricity after the product has passed your company's acceptance inspection procedures. - 4. When the product is in CFL models, CFL service life and brightness will vary According to the performance of the inverter used, leaks, etc. We cannot accept responsibility for product performance, reliability, or defect, which may arise. - 5. We cannot accept responsibility for intellectual property of a third party, which may arise through the application of our product to your assembly with exception to those issues relating directly to the structure or method of manufacturing of our product. - 6. Optrex will not be held responsible for any quality guarantee issue for defect products judged as Optrex-origin longer than 2 (two) years from Optrex production or 1(one) year from Optrex, Optrex America, Optrex Europe delivery which ever comes later.