

SinoVoip Co., Limited

Banana PI

User Manual

1

Banana PI is the open source hardware platform which published to assistant the Elastos.org open source OS, Banana PI M1 is the dual core Android 4.2 product which more better than the Raspberry Pi.

Banana Pi series run Android, Debian linux, Ubuntu linux, Raspberry Pi imange and cubieboard imange.

Elastos coordinate multi CUP to from the family cloud entirnment which based on the "software/hardware service"

Banana PI hardware: 1Ghz ARM7 dual-core processor, 1GB DDR3 SDRAM,

Banana PI with Gigabit ethernet port, SATA Socket. It can run with Android 4.2.2 smoothly. The size of Banana PI M1 like the credit card, it can easily run with the game it support 1080P high definition video output, the GPIO compatible with Raspberry Pi and can run the ROM Image directly

Hardware specification

CPU	A20 ARM Cortex TM -A7 Dual-Core				
GPU	ARM Mali400MP2Complies with OpenGL ES 2.0/1.1				
Memory (SDRAM)	1GB DDR3 (shared with GPU)				
Onboard Storage	SD (Max. 64GB) / MMC card slot UP to 2T on 2.5 SATA disk				
Onboard Network	10/100/1000 Ethernet RJ45, optional WIFI				
Video Input	A CSI input connector allows for the connection of a designed camera module				
Video Outputs	HDMI, CVBS , LVDS/RGB				
Audio Output	Audio Output 3.5 mm Jack and HDMI				
Power Source	5 volt via MicroUSB(DC In Only) and/or MicroUSB (OTG)				
USB 2.0 Ports	2 (direct from Allwinner A20 chip)				
Buttons	Reset button: Next to MicroUSB connector Power button: Next to Reset button				

	Boot button (Optional): Behind HDMI connector		
· · · · ·	GPIO,UART,I2C bus,SPI bus with two chip selects,		
pin	CAN bus,ADC,PWM,+3.3v,+5v,ground.		
LED	Power Key & RJ45		
Remote	IR (Optional)		
OS	Android 4.2, Firefox OS and Linux etc. OS		
Interface definition			
Product size	92 mm × 60mm		
Weight	48g		

Hardware

Front:

3

Back:

Interface :

4

Hardware connect sketch map

Use method

Step 1: Get what you need

First time to enjoy your Banana Pi, you need at least the accessories in the table below.

No. Item Minimu recommended specification & notes

1	SD card	•	Minimum size 4Gb; class 4 (the class indicates how fast the card is). We recommend using branded SD cards as they are more reliable.
2a	HDMI(Full sized) to HDMI / DVI lead	•	HDMI to HDMI lead (for HD TVs and monitors with HDMI input). OR HDMI to DVI lead (for monitors with DVI input).
2b	AV video lead	•	A standard AV video lead to connect to your analogue display if you are not using the HDMI output.
3	Keyboard and mouse	•	Any standard USB keyboard and mouse should work. Keyboards or mice that take a lot of power from the USB ports, however, may need a powered USB hub. This may include some wireless devices.
4	Ethernet cable/USB WiFi(Optional)	•	Networking is optional, although it makes updating and getting new software for your Banana Pi much easier.
5	Micro USB power adapter	•	A good quality, micro USB power supply that can provide at least 700mA at 5Vis essential. Many mobile phone chargers are suitable—check the label on the plug.
6	Audio lead (Optional)	•	You can choose a 3.5mm jack audio led to connect to audio port to get stereo audio.
7	Mobile Hard disk (Optional)	•	You can choose to connect a mobile hard disk to SATA port to store more files.

Step 2:Download the relevant Image file:

Please visit our webmaster: <u>www.banana-pi.org</u> to download image ,banana pi all image can be downlad form this web.

Step3: Prepare your SD card for the Banana Pi

In order to enjoy your Banana Pi, you will need to install an Operating System (OS) onto an SD card. Instructions below will teach you how to write an OS image to your SD card under Windows and Linux.

- Insert your SD card into your computer. The size of SD should be larger than the OS image size, generally 4GB or greater.
- 2. Format the SD card.

Windows:

- i. Download the a SD card format tool such as **SD Formatter** from <u>https://www.sdcard.org/downloads/formatter_4/eula_windows/</u>
- ii. Unzip the download file and run the setup.exe to install the tool on your machine.

iii. In the "Options" menu, set "FORMAT TYPE" option to QUICK, "FORMAT

SIZE ADJUSTMENT" option to "ON".

FORMAT TYPE	QUICK
FORMAT SIZE	ON .

- iv. Check that the SD card you inserted matches the one selected by the Tool.
- v. Click the "Format" button.

Linux:

- vi. Run *fdisk –I* command to check the SD card node.
- vii. Run *sudo fdisk /dev/sdx* command to delete all partition of SD card.
- viii. Run *mkfs –t vfat /dev/sdx* command to format the entire SD card as FAT.
 (x should be replaced according to your SD card node)
- 3. Download the OS image from Download district.

4. Unzip the download file to get the OS image.

Windows: Right click on the file and choose "Extract all".

Linux: Run unzip [downloaded filename] command.

5. Write the image file to the SD card.

Windows:

i. Download a tool that can wirte image to SD card, such as **Win32**

Diskimager from:

http://sourceforge.net/projects/win32diskimager/files/Archive/

ii. Open the unzipped image file.

Image File			Device
G:/banana pi/pi	.8GB/pi.8GB		[G:\] •
MD5 Hash:			
nzsn. cum			
Progress			

iii. Click Write button. Wait patiently to successfully complete writing.

Linux:

- iv. Run *fdisk –I* command to check the SD card node.
- Run *dd if=[imagename] of=/dev/sdx* command to write image file to SD card. Wait patiently to successfully complete writing.

Step4: Set up your Banana Pi

According to the set up diagram below, you can easily set up your Banana Pi.

 Insert the written-image SD card that to the SD card spot on the left side edge of the underside of the board.

http://www.banana-pi.com

 On the bottom "edge" in the middle of the board is the HDMI Type A (Full sized) port, just on the right of the SATA port. Just connect any HDMI cable from the board to your TV or HDMI Monitor.

If you don't have an TV/Monitor with a HDMI or DVI-D port you can use the yellow AV jack located in the middle of the "top" edge and the 3.5 mm stereo headphone jack to the right of it.

- 3. Plug a USB keyboard and mouse into the USB slots located on the right edge.
- 4. Just under the USB ports on the right edge is the ethernet connector for anyone who wants to plug the Banana Pi into a wired network.
- 5. Finally, at the very left of the bottom edge is the micro-usb power connector. Plug in a regulated power supply that is rated at 5V ±5% and at least 700mA (or 0.7A). Any number bigger than 700 mA (like 1000mA) will also work. Avoid using the smaller chargers used for small GSM phones, as these are often unregulated, even if they claim "5V 1A", they may do "5V" and may do "1A", but not at the same time!

The mini-USB (on the left) is the wrong one. It's thicker and looks like a trapezoid with its sides pinched in. The micro-USB (on the right) is the correct one. It is thinner and also looks like a trapezoid except it's sides are rounded outward.

If all goes well, the Banana Pi will boot in a few minutes. The screen will display the OS GUI.

Step5: Shut down your Banana Pi

You can use the GUI to shut down the Banana Pi safely.

Also you can run the command in the terminal:

sudo halt

or

sudo shutdown -h.

This will shut down the PI safely, (just use the power key to turn off might damage the SD-cards file system). After that you can press the power key for 5 seconds to turn it off.

If all is well, the splash screen show as below

Android system screen

http://www.banana-pi.com

Ubuntu system screen

Debian system screen

Raspberry Pi

GPIO define

We can check Banana Pi PIN definition in this thread, including CON1, CON2, CON3, J11 and J12. J11 contains the default serial port UARTO (UARTO-RX,UARTO-TX). UATRO is configured to be used for console input/output. Whilst this is useful if you want to login using the serial port. So it is the most common used PIN.

J12 also contains serial port.

CON3 contains CAN bus, SPI bus, PWM, serial port and etc. It can be configured to be used for kinds of peripherals.

CON1 is a DSI display connector.

CON2 is a CSI camera connector.

Pictures and tables below show the specific layout and definition of PIN.

Banana Pi V1.4 PIN define

PIN	PIN define	GPIO
CON1-P01	LINEINL	
CON1-P02	LINEINR	

CON1-P37	HPL	
CON1-P36	HPR	
CON1-P07	FMINL	
CON1-P09	FMINR	
CON1-P04	ADC_X1	
CON1-P06	ADC_X2	
CON1-P08	ADC_Y1	
CON1-P10	ADC_Y2	
CON1-P13	LRADCO	
CON1-P15	LRADC1	
CON1-P33	RESET#	
CON1-P17	CSI-D0	PE4
CON1-P19	CSI-D1	PE5
CON1-P21	CSI-D2	PE6
CON1-P23	CSI-D3	PE7
CON1-P25	CSI-D4	PE8
CON1-P27	CSI-D5	PE9
CON1-P29	CSI-D6	PE10
CON1-P31	CSI-D7	PE11
CON1-P20	CSI-PCLK	PEO
CON1-P24	CSI-MCLK	PE1
CON1-P28	CSI-VSYNC	PE3
CON1-P30	CSI-HSYNC	PE2
CON1-P18	CSI0-STBY-EN	PH19
CON1-P26	CSIO-RESET#	PH14
CON1-P32	CSI1-STBY-EN	PH18
CON1-P34	CSI1-RESET#	PH13
CON1-P14	TWI1-SDA	PB19
CON1-P16	TWI1-SCK	PB18
CON1-P12	CSI-FLASH	PH17
CON1-P22	CSIO-PWR-EN	PH16
CON1-P35	CSI-I00	PH11
CON1-P38	IPSOUT	
CON1-P40	IPSOUT	
CON1-P05	GND	
CON1-P11	GND	
CON1-P39	GND	
CON1-P03	VCC-CSI	

CON2-P09

LCD0-D00

PD0

CON2-P11	LCD0-D01	PD1
CON2-P13	LCD0-D02	PD2
CON2-P15	LCD0-D03	PD3
CON2-P17	LCD0-D04	PD4
CON2-P19	LCD0-D05	PD5
CON2-P21	LCD0-D06	PD6
CON2-P23	LCDO-D07	PD7
CON2-P25	LCD0-D08	PD8
CON2-P27	LCD0-D09	PD9
CON2-P29	LCD0-D10	PD10
CON2-P31	LCD0-D11	PD11
CON2-P33	LCD0-D12	PD12
CON2-P35	LCD0-D13	PD13
CON2-P37	LCD0-D14	PD14
CON2-P39	LCD0-D15	PD15
CON2-P40	LCD0-D16	PD16
CON2-P38	LCD0-D17	PD17
CON2-P36	LCD0-D18	PD18
CON2-P34	LCD0-D19	PD19
CON2-P32	LCD0-D20	PD20
CON2-P30	LCD0-D21	PD21
CON2-P28	LCD0-D22	PD22
CON2-P26	LCD0-D23	PD23
CON2-P22	LCDO-CLK	PD24
CON2-P20	LCDO-CS	PH6
CON2-P18	LCDO-HSYNC	PD26
CON2-P16	LCD0-VSYNC	PD27
CON2-P14	LCDO-DE	PD25
CON2-P12	LCD0-I02	PH9
CON2-P10	PWMO	PB2
CON2-P08	LCD0-I01	PH8
CON2-P06	LCD0-I00	PH7
CON2-P04	TWI3-SCK	PIO
CON2-P02	TWI3-SDA	PI1
CON2-P07	LCDIO-03	PH12
CON2-P01	IPSOUT	
CON2-P03	IPSOUT	
CON2-P05	GND	
CON2-P24	GND	

CON3-P18	CAN_RX	PH21
CON3-P16	CAN_TX	РН20
CON3-P23	SPI0_CLK	PI11
CON3-P21	SPI0_MISO	PI13
CON3-P19	SPI0_MOSI	PI12
CON3-P24	SPI0_CS0	PI10
CON3-P26	SPI0_CS1	PI14
CON3-P05	TWI2-SCK	PB20
CON3-P03	TWI2-SDA	PB21
CON3-P15	UART2_CTS	PI17
CON3-P22	UART2_RTS	PI16
CON3-P11	UART2_RX	PI19
CON3-P13	UART2_TX	PI18
CON3-P10	UART3_RX	PH1
CON3-P08	UART3_TX	РНО
CON3-P12	PH2	PH2
CON3-P07	PWM1	PI3
CON3-P01	VCC-3V3	
CON3-P17	VCC-3V3	
CON3-P02	VCC-5V	
CON3-P04	VCC-5V	
CON3-P09	GND	
CON3-P25	GND	
CON3-P06	GND	
CON3-P14	GND	
CON3-P20	GND	
J12-P03	PH5	PH5
J12-P05	PH3	PH3
J12-P04	UART7_RX	PI21
J12-P06	UART7_TX	PI20
J12-P01	VCC-5V	
J12-P02	VCC-3V3	
J12-P07	GND	
J12-P08	GND	
J11-P01	UARTO-TX	PB22
J11-P02	UARTO-RX	PB23

Banana pi UART define

