Freescale Semiconductor User's Guide Document Number: KT34844UG Rev. 1.0, 10/2008

KIT34844EPEVME Evaluation Board

Figure 1. Evaluation Board (EVB)

Table of Contents

1 Kit Contents / Packing List	 . 2
2 Important Notice	 . 3
3 EVB Introduction	 . 4
4 Required Equipment	 . 6
5 EVB Setup Configuration Diagram	 . 7
6 Using Demo Board	
7 KIT34844 Installer Instructions	 11
8 Using Graphical User Interface (GUI)	 15
9 LED Load Board Configuration (10 Channels x 16 LEDs)	 24
10 EVB Schematic (1) - MC34844 Section	 25
11 EVB Schematic (2) - MC34844 Section	 26
12 EVB Schematic (3) - MC34844 Section	 27
13 EVB Schematic (4) - USB to I ² C Section	 28
14 EVB Schematic (5) - USB to I ² C Section	 29
15 Board Layout	 30
16 EVB Board BOM	 38
17 References	 41
18 Revision History	 42

© Freescale Semiconductor, Inc., 2008. All rights reserved.

1 Kit Contents / Packing List

- EVB KIT34844EPEVME
- USB Cable Type A B
- Cable for LED board connection
- CD

2 Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This EVB may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This EVB is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur.

Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part.Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008

3 EVB Introduction

This EVB shows the functionality of MC34844 set it up under specific operation parameters.

MC34844 which is a high efficiency, LED driver for use in backlighting LCD displays from 10" to 20"+ can operate in this demo board from a supply of 24V, the device is capable of driving up to 160 LEDs in 10 parallel strings. The current through these 10 channels is matched to within $\pm 2\%$ and can be programmed via the I²C/SM-bus interface.

For evaluation purposes this Demo Board includes a USB to I²C bridge that allows control of the EVB via USB communication through a PC. All these control fuctions are gathered in a friendly GUI (Graphical Unit Interface) also provided along with the Demo Board.

This EVB allows the user to test this device on its three operational modes: Master Mode, Slave Mode and Stand Alone Mode by facilitating access to all pins and providing different possible component configuration.

3.1 EVB operation parameters.

Input Voltage (Vin) = 24 V +/- 10%

Expected Output Voltage (Vout) = around 47V

LED Load = 16 Leds x 10 Channels

Duty Cycle = All range.

Peak Current on all channels = all range up to 50mA

OVP = 55V (For 16Leds)

Boost Frequency = 600KHz

Master Mode PWM Frequency = From 100Hz to 25KHz

Slave Mode PWM Frequency = From 1KHz to 25KHz

(In Slave Mode some considerations should be taken into accout from 100Hz to 1KHz, please refer to the "Functional Device Operation" Section from the Data Sheet.)

Since the demo board goes into 'Default Configuration' every time it is powered up, the OVP level should be changed to 55V using the Graphical unit interface. This way the device's performance can be optimized.

3.2 EVB Features

- Bridge that Allows control of the EVB
- USB communication through a PC
- Four Layer Board
- Low Noise Design
- Top Layer Placement
- USB to I²C Interface Added
- Terminal Block and Connector for the 10 LED channels
- Terminal Blocks for Input Voltage, Output Voltage, and Control Signals (EN, A0SEN, CK, PWM)
- Jumper Configuration and resitors arrays for signals Adjusting.
- Test Holes for SW Currrent Measurements

3.3 MC34844 Features

- Input voltage of 7V to 28V
- Output Voltage up to 60V, with auto Vout selection
- 3.0A integrated boost
- Up to 50mA LED current per channel
- 90% efficiency (DC:DC)
- 10-channel current mirror with ±2% current matching
- I²C/SM-bus interface
- 8-bit programmable current DAC
- PWM frequency programmable or synchronizable from 100 Hz to 25 KHz
- User programmable OVP
- LED failure detection and OTP/OCP/UVLO lockout
- 32-Ld 5x5x0.8mm TQFN Pb-Free packaging

3.4 MCU (MC9S08JM60) Features - USB & I^2C

For this EVB it is important to highlight the following MCU features:

- USB USB2.0 full-speed (12Mbps) device controller with dedicated on-chip USB transceiver, 3.3-V
 regulator and USBDP pull-up resistor; supports control, interrupt, asynchronous, and bulk transfers;
 supports endpoint 0 and up to 6 additional endpoints; endpoints 5 and 6 can be combined to provide
 double buffering capability.
- I²C Inter-integrated circuit BUS module to operate at up to 100kbps with maximum BUS loading; multi-master operation; programmable slave address; interrupt-driven byte-by-byte data transfer; 10-bit addressing and broadcast modes support.

Since the loading on the BUS is not significat for this application, it is then possible reach up to 400kbps.

For more information about this MCU please refer to :

http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S08JM60.pdf

3.5 GUI Description/Features

This GUI allows the user to control and program all Registers related to the following Functions:

- Chip Enable
- OVP Voltage
- PWM (Frequency, Duty Cycle)
- Channel Enable
- Boost Frequency
- Clear FAIL
- Strobe Mode
- Channel Current Program

4 Required Equipment

4.1 System Requirements

These requirements apply if the graphical unit interface will be used for controlling the I²C communication.

- HARDWARE
 - 400MHz Pentium® II processor or AMD-K6® class processor,
 - 128MB of RAM
- CD-ROM drive
- USB Port
- SOFTWARE Microsoft .NET Framework Version 2.0 (x86)
- OPERATING SYSTEM Microsoft® Windows® 98 SE/2000/XP (Service Pack 2)
- DISK SPACE Full: 500 MB

If I^2C communication is provided from a different source, this communication should comply with I^2C standards at 100/400 kbps. (Device Address = 76h)

4.2 Hardware Requirements

- Power Supply (up to 30V @ 3A)
- LED Board
- USB Cable Type A-B or 3 Wire Cable for I²C Communication
- 12 Wires cable for LED board connection

5 EVB Setup Configuration Diagram

EVB – KIT34844EPEVME

Figure 1. EVB Setup Configuration Diagram

6 Using Demo Board

6.1 Demo Board Jumper Connections

JUMPER CONNECTION	FUNCTION	DESCRIPTION
J4(1-2) + J5(1-2)	10.2kΩ for PIN+NIN	These two Jumpers will set the ISET resistor at $10.2k\Omega$ allowing a maximum current through all channels up to 50mA when PIN and NIN modes are enabled at the same time. If PIN and NIN modes are disabled the maximum current will be 25mA.
J4(2-3) + J5(1-2)	5.1k Ω for PIN or NIN	This configuration is ideal for getting maximum current through all channels (50mA) when PIN and NIN modes are disabled.
J5(2-3) + J6(1-2)	ISET variable resistor for PIN or NIN	In this configuration, one can vary the value of ISET resistor to control the maximum current through all channels. To avoid damaging this part, Do not use this configuration if PIN + NIN mode is active.
J5(1-2) + J6(2-3)	ISET variable resistor for PIN+NIN	In this configuration, one can vary the value of ISET resistor to control the maximum current through all channels. This mode is intended to be used even when PIN + NIN mode is active because it will limit the current at 50mA.
J12(1-2)	PIN pin to VDC1	PIN mode Disable.
J13(1-2)	NIN pin to VDC1	NIN mode Disable.
J12(2-3)	PIN pin to Variable Resistor	Simulates PIN mode by varying the voltage across this pin from 0 to VDC1.
J13(2-3)	NIN pin to Variable Resistor	Simulates NIN mode by varying the voltage across this pin from 0 to VDC1.
J17	OVP - HW Controlled	This jumper connects A0SEN pin to a resistor divider which sets the OVP value respect to the internal threshold of 6.5V. This Resistor divider is connected from Vout to GND. Please refer to Schematic to set the correct resistance value based on your needs. For HW OVP the jumper on J15 must be disconnected.
J9, J29	I ² C clock and data to GND	I ² C mode disabled. (Do not connect USB cable if one of these two jumpers are connected)
J10(1-2)	PWM pin to VDC1	Sets PWM pin to HIGH level.
J10(2-3)	PWM pin to GND	Sets PWM pin to LOW level
J11(1-2)	Chip Enable	CHIP Enabled by Hardware. It takes EN pin to HIGH
J11(2-3)	Chip Disable	CHIP Disabled by Hardware. It takes EN pin to LOW
J14(1-2)	Master Mode	M/~S pin tied to HIGH for Master Mode
J14(2-3)	Slave Mode	M/~S pin tied to LOW for Salve Mode
J15(1-2)	A0SEN to VDC1	This Jumper allows the IC to receive I ² C data. (J17 must be disconnected)
J15(2-3)	A0SEN to GND	This Jumper configures the IC to reject I ² C data.(J17 must be disconnected)
J16	Fail pin LED	Connect LED for Fail condition indicator. (LED ON = Fail Condition, LED OFF = OK)

Note: Jumpers J15 & J17 can not be connected at the same time.

Operation Mode based on jumper connections

- Yellow: MASTER MODE (Default Configuration) -These jumpers should be connected in order to start up the part in Master Mode.
 PIN and NIN functions are disabled.
- Blue: SLAVE MODE To start up the part in Slave Mode, all jumpers should be connected for a master mode operation, expect J14 that should be connected in J14(2-3) position.
 In Slave Mode an external clock should be provided to CK pin of the Terminal Block (J31).
- Green: MANUAL MODE Configure the part as in Master mode, but remove jumper on J15 and connect jumper J17.
 (Remember to set a correct OVP value before turning on the part) Do not forget set a 10.2K resistor on ISET pin if PIN and NIN modes are used at the same time.
- Red: If an external I²C communication is desired for an specific application, clock and data should be connected to the jumper highlighted in red.
 For this external I²C "communication", USB cable must be disconnected to avoid damage the MCU.

Jumper description is shown above in Demo Board Jumper Connections.

Under these configurations the PWM pin is set LOW in order to allow programming the part before turning all LED channels ON.

If PIN and NIN Mode are enabled at the same time, J4(1-2) and J5(1-2) must be connected to avoid damaged the part.

6.2 Start up sequence for MASTER MODE (Default)

- 1. Make sure jumper connections are as specified above for Master Mode and the LED load board is correctly connected to the EVB.
- 2. Set the power supply (24V@3A).
- 3. Turn power supply off and connect it to the Demo board
- Connect USB cable. (Diode "D3" should be ON) (Refer to Section 10 - KIT34844 Installer Instructions)
- 5. Turn power supply on. (Diode "D2" should be OFF)
- 6. Program the part and make sure to set OVP = 55V. (please refer to the GUI section Home Page) DO NOT change the Boost Frequency, remember that all external components are calculated for 600KHz.
- 7. Take PWM pin HIGH [J10 (1-2)].
- 8. All LEDs should be ON.

6.3 Start up sequence for SLAVE MODE

- 1. Make sure jumper connections are as specified above for Slave Mode and the LED load board is correctly connected to the EVB.
- 2. Set the power supply (24V@3A).
- 3. Turn power supply off and connect it to the Demo board
- 4. Set an external Master Clock and connect it to CK pin through the connector J31.
- 5. Connect USB cable. (Diode "D3" should be ON) (Refer to Section 10 - KIT34844 Installer Instructions)
- 6. Turn power supply on. (Diode "D2" should be OFF)
- 7. Program the part and make sure to set OVP = 55V. (please refer to the GUI section Home Page) DO NOT change the Boost Frequency, remember that all external components are calculated for 600KHz.
- 8. Take PWM pin HIGH [J10 (1-2)].
- 9. All LEDs should be ON.

6.4 Start up sequence for MANUAL MODE

- 1. Make sure jumper connections are as specified above for Manual Mode and the LED load board is correctly connected to the EVB. (Jumpers J15 and J17 can not be connected at the same time)
- 2. Set the power supply (24V@3A).
- 3. Turn power supply off and connect it to the Demo board.
- 4. Turn power supply on. (Diode "D2" should be OFF).
- 5. Verify that the voltage on A0/SEN pin (TP22) to 2.8V, if not please set it by adjusting trimpot R17. (It only applies to set OVP = 55V when Vin = 24V)
- 6. If PIN and NIN modes want to be used at the same time please continue with step #7 and #8, if not skip them.
- 7. Move jumper J4 to position 1-2, and jumpers J12 and J13 to position 2-3.
- 8. Verify that the voltage on PIN pin (TP2) is around 2V and NIN pin (TP6) is around 0.1V, if not please set them by adjusting trimpots R11 and R12.
- 9. Take PWM pin HIGH [J10 (1-2)].
- 10. All LEDs should be ON.

 I^2C communication can be used in this mode, if so please make sure to set an OVP = 55V. (please refer to the GUI section - Home Page)

DO NOT change the Boost Frequency, remember that all external components are calculated for 600KHz.

7 KIT34844 Installer Instructions

This EVB is preloaded with a firmware that allows USB communication with the PC and allows the user to write devices using I²C signals

A graphical Unit interface (GUI) is provided by Freescale in order to achive communication with the KIT34844 board. This GUI allows the user to control all the functions of the board.

INSTALLER INTRUCTIONS:

- 1. On the CD provided, open folder named KIT34844 Setup
- 2. Execute "KIT34844_Setup.exe" and Click Next.

- 3. Please make sure that KIT34844EPEVME is NOT connected.
- 4. Read Freescale"License Agreement" and press "I Agree".
- 5. Select components to install.

KIT34844 Installer Instructions

6. Choose Install Location. It is recommended to choose the default destination folder "C:\Program Files\Freescale\KIT34844".

🏓 KIT 34844 v1.0 Setup
Choose Install Location Choose the folder in which to install KIT34844 v 1.0.
Setup will install KIT34844 v1.0 in the following folder. To install in a different folder, click Browse and select another folder. Click Install to start the installation.
Destination Folder C:\Program Files\Freescale\KTT34844 Browse
Space required: 5.2MB Space available: 18.5GB Freescale

- 7. If Microsoft . NET Framework 2.0 is already installed, skip intructions 8 and 9
- 8. A pop up window will appear to install "Microsoft .NET Framework 2.0". Click "OK" to install it.

🌽 KIT34844 v1.0 Setup	
Installing Please wait while KIT34844 v1.0 is being installed.	
.NET Framework Version found: 1.1.4322, but is older than the required version: 2	
Cheding your .NET Framework version .NET Framework Version found: 1.1.4322, but is older than the required version: 2	
KIT34844 v1.0 Setup	
Your computer needs to be updated with Microsoft .NET framework Version 2.0	
Freescale < Back Next > Can	ncel

9. Microsof .NET Framework 2.0 Setup will start, click NEXT button.

10. Please read Microsoft License Agreement and check the box if you do accept the terms.

Hicrosoft .NET Framework 2.0 Setup	
End-User License Agreement	
End-User License Agreement	
MICROSOFT SOFTWARE SUPPLEMENTAL LICENSE T MICROSOFT .NET FRAMEWORK 2.0	ERMS 📃
Microsoft Corporation (or based on where you live, supplement to you. If you are licensed to use Micro- software (the "software"), you may use this supplem not have a license for the software. You may use a validly licensed copy of the software.	oft Windows operating system nent. You may not use it if you do
	Print
By clicking 'I accept the terms of the License Agreem product, I indicate that I have read, understood, an License Agreement.	
✓ I accept the terms of the License Agreem	ent
< Ba	ick Install > Cancel

- 11. Click "Install" .
- 12. Once Framework installation is done, press "FINISH".
- 13. GUI installation will continue, please click "FINISH".

KIT34844 v1.0 Setup	
	Completing the KIT34844 v1.0 Setup Wizard
	KIT34844 v1.0 has been installed on your computer.
	Click Finish to close this wizard.
	< Back Finish Cancel

14. You can now connect the KIT34844 board to your computer. Click "OK"

15. Now the GUI is succesfully installed in Programs Files and also a shortcut is created on your Desktop.

Installing EVB Driver

16. Connect EVB to the PC with an USB cable Type A-B.

17. When the "Found new hardware wizard" appears, select "Install the software automatically (Recommended)"

18. Click NEXT.

19. Wait for the installation to finish and click 'Finish'

20. Now you can LAUNCH the GUI.

Note: In order to use the GUI, the EVB must be Powered Up.

8 Using Graphical User Interface (GUI)

This Section describes an easy and detailed way of using the GUI. Write Register Table, Register Description and OVP table will be shown and explained.

Note: In order to use the GUI, the EVB must be Powered Up.

8.1 GUI Sections

8.1.1 Setting up I²C communication

In this Window you can set :

- The Baudrate of I²C communication: 100kbps or 400kbps
- The current set on ISET (Eqn. 2).

🏓 KIT 34844 (GUI			
🧦 free	escale			
IIC baudrate ISET	100 Kbps 50.0 mA	~		
Not	e: ISET ≤ to 50.0 mA			
START				
KIT 34844	GUI			

Figure 2. I²C set up Window

8.1.2 Home Page

This Window is splitted in two main sections:

a) SELECTORS

It allows the user to set up the following functions:

- Enable or Disable the following modes:
- I²C
- PIN
- NIN
- STROBE
- Select from a Drop list:
- OVP Value. For this EVB please set it at 55V.
- Boost Frequency (Components on EVB are calculated for 600KHz).

Do not change Boost Frequency. All compensation network is calculated for 600KHz of boost frequency.

- Set from a Sliding Bar:
- PWM Frequency
- PWM Duty Cycle
- Maximum Current on all channels
- b) REAL TIME:

This Section allows the user to change in real time :

- Enable Status
- Turn ON/OFF all channels
- Clear FAIL Status

Also the user can call the following functions:

- Current Control
- Register Table
- Default Configuration (IC Default Values)
- Tests

🏓 КІТЗ	4844 Con	figuration	Graphic Use	er Interfa	ce				
	S	scale	2						
Select	ors	Enable	Disable		HEX: 300	F	REQ: 25000	Hz	
12C N	lode	0	۲	100 Hz	<			>	25 KHz
PIN		۲	0						
NIN		۲	0		HEX: FF		C: 100	%	
STR	DBE	0	۲	0 %	<			>	100 %
OVP		55.0V (0xD)	~		HEX: FF		uty Cycle SET: 100	%	
Boost	t Freq	600KHz (0x)	2) 🗸	0 mA	<			>	50 mA
_		SE SE	ND				Current Set 255/RSET		
Real 1	Dime								
		CTIONS BUT	TONS			FUN	ICTIONS		
ENA	BLE STATU	S:	ON	Test	s		NT CONTROL		
All Ch	annels ON S	STATUS:	ON			REGIS	TER TABLE		
Clear	FAIL STAT	JS:	OFF			DEFA	ULT CONF		
									_
KIT 3	4844 GU	I Configu	ration Gr	aphic U	ser Inter	face			

Figure 3. GUI - Home Page

8.1.3 Current Control Window

This window allows the user to control the following Registers automatically. It provides an easy and quick way of programming all the registers:

- All_OFF bit
- CHEN[9:0]
- ICH#
- ICHG

The global current control should be first set and then send the information by pressing SEND button.

Independent current control should also be first set and then send by pressing SEND button. It can also be sent automatically with a default update time at 1 second by pressing the OFF button at the bottom. This update time could be changed as needed.

Current Control			
GLOBAL Current Control ALL CHs ON 0 mA	● 50 mA	50 mA FF	HEX
- Independent Current Control			
CHO OMA <	> 50 mA	50 mA FF	HEX
CH1 OmA <	50 mA	50 mA FF	HEX
CH2 ON 0 mA <	> 50 mA	50 mA FF	HEX
CH3 OM 0 mA	> 50 mA	50 mA FF	HEX
CH4 ON 0 mA	> 50 mA	50 mA FF	HEX
CH5 OmA <	> 50 mA	50 mA FF	HEX
CH6 Om OmA <	5 0 mA	50 mA FF	HEX
CH7 OM 0 mA	5 0 mA	50 mA FF	HEX
CH8 OmA <	> 50 mA	50 mA FF	HEX
CH9 OmA <	5 0 mA	50 mA FF	HEX
Update @ 1000 ms	OFF	SEND	
KIT 34844 GUI Current Control			

Figure 4. GUI - Current Control Window

8.1.4 Register Table Window

In this window the user can change the logic value of each bit independently. This can be done either by pressing the bit or changing all Registers at the right side of the desired HEX value.

- Light Blue means the bit is a logic cero.
- Dark Blue means the bit is a logic one.

r1able OVP3 OVP2 OVP1 OVP0 NINEN PINEN EN F7 HEX OVP3 OVP2 OVP1 OVP0 NINEN PINEN EN F7 HEX OVP3 CLRI2C SETI2C 0 HEX CLRI2C SETI2C 0 HEX OVP3 FPWM5 FPWM4 FPWM3 FPWM1 FPWM0 0 HEX FPWM11 FPWM10 FPWM19 FPWM18 FPWM17 FPWM16 C HEX DPWM7 DPWM6 DPWM14 FPWM13 FPWM12 0 HEX DPWM7 DPWM6 DPWM4 DPWM3 DPWM2 DPWM1 FF HEX DPWM7 DPWM6 DPWM4 DPWM3 DPWM2 DPWM1 FF HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN3 CHEN3 CHEN5 1F HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN3 CHEN3 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH1_3	-	fre	esca								
CLRI2C SETI2C 0 HEX FPWM5 FPWM4 FPWM3 FPWM2 FPWM1 FPWM0 0 HEX FPWM1 FPWM1 FPWM1 FPWM1 FPWM10 C HEX FPWM1 FPWM11 FPWM10 FPWM13 FPWM12 0 HEX PPWM17 FPWM16 FPWM13 FPWM12 0 HEX DPWM6 DPWM4 DPWM3 DPWM2 DPWM11 FPWM12 0 HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN5 IF HEX	Regis	ster Table									
FPWM5 FPWM4 FPWM3 FPWM2 FPWM1 FPWM0 0 HEX FPWM1 FPWM1 FPWM1 FPWM1 FPWM1 FPWM6 C HEX FPWM11 FPWM10 FPWM13 FPWM14 FPWM13 FPWM12 0 HEX FPWM11 FPWM16 FPWM13 FPWM14 FPWM13 FPWM12 0 HEX DPWM6 DPWM4 DPWM3 DPWM2 DPWM11 DPWM0 FF HEX DPWM6 DPWM4 DPWM3 DPWM2 DPWM11 DPWM0 FF HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN3 CHEN1 CHEN5 1F HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN3 CHEN1 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_1 ICH0_0 FF HEX ICH1_7 ICH0_6 ICH1_5 ICH1_4 ICH1_3 ICH1_	00	OVP3	OVP2	OVP1	OVP0		NINEN	PINEN	EN	F7	Пнех
FPWM11 FPWM10 FPWM8 FPWM7 FPWM6 C HEX FPWM17 FPWM16 FPWM15 FPWM14 FPWM13 FPWM12 0 HEX DPWM7 DPWM6 DPWM4 DPWM3 DPWM2 DPWM11 DPWM01 FF HEX DPWM7 DPWM6 DPWM4 CHEN3 CHEN2 CHEN1 CHEN0 1F HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN6 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_1 ICH0_0 FF HEX ICH0_7 ICH0_6 ICH0_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH2_3 ICH1_1 ICH1_0 FF HEX ICH1_7 ICH2_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX	01							CLRI2C	SETI2C	0	-
FPWM17 FPWM16 FPWM14 FPWM13 FPWM12 0 HEX DPWM7 DPWM6 DPWM5 DPWM4 DPWM3 DPWM2 DPWM1 DPWM0 FF HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN6 CHEN5 1F HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN6 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_11 ICH0_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH2_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH1_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH4_4 I	04			FPWM5	FPWM4	FPWM3	FPWM2	FPWM1	FPWM0	0	HEX
DPWM7 DPWM6 DPWM5 DPWM4 DPWM3 DPWM2 DPWM1 DPWM0 FF HEX STRB CHEAL ALL_OFF CHEN4 CHEN3 CHEN2 CHEN1 CHEN5 1F HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN6 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_11 ICH0_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH2_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH1_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH4_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH4_7 IC	05			FPWM11	FPWM10	FPWM9	FPWM8	FPWM7	FPWM6	С	П нех
CHEN4 CHEN3 CHEN2 CHEN1 CHEN0 1F HEX STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_1 ICH0_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH2_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH4_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH4_0 FF HEX ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_12 ICH3_1 ICH4_0 FF HEX ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3	06			FPWM17	FPWM16	FPWM15	FPWM14	FPWM13	FPWM12	0	HEX
STRB CLRFAIL ALL_OFF CHEN9 CHEN8 CHEN7 CHEN6 CHEN5 1F HEX ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_1 ICH0_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH2_1 ICH2_0 FF HEX ICH3_7 ICH2_6 ICH3_5 ICH3_4 ICH2_3 ICH2_2 ICH2_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH4_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_12 ICH4_10 FF HEX ICH5_7 ICH6_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH6_6 FF HEX ICH6_7 ICH6_6 <td>07</td> <td>DPWM7</td> <td>DPWM6</td> <td>DPWM5</td> <td>DPWM4</td> <td>DPWM3</td> <td>DPWM2</td> <td>DPWM1</td> <td>DPWM0</td> <td>FF</td> <td>HEX</td>	07	DPWM7	DPWM6	DPWM5	DPWM4	DPWM3	DPWM2	DPWM1	DPWM0	FF	HEX
ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_1 ICH0_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH2_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH4_7 ICH3_6 ICH4_5 ICH4_4 ICH4_3 ICH4_2 ICH3_1 ICH4_0 FF HEX ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_6 FF HEX ICH5_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH5_2 ICH5_1 ICH6_6 FF HEX ICH6_7<	80				CHEN4	CHEN3	CHEN2	CHEN1	CHENO	1F	HEX
ICH0_7 ICH0_6 ICH0_5 ICH0_4 ICH0_3 ICH0_2 ICH0_1 ICH0_0 FF HEX ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH1_4 ICH1_3 ICH2_2 ICH1_1 ICH1_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH3_7 ICH3_6 ICH4_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_2 ICH3_1 ICH4_0 FF HEX ICH5_7 ICH6_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH6_0 FF HEX ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HEX ICH6_7<	09	STRB	CLRFAIL	ALL_OFF	CHEN9	CHEN8	CHEN7	CHEN6	CHEN5	1F	HE>
ICH1_7 ICH1_6 ICH1_5 ICH1_4 ICH1_3 ICH1_2 ICH1_1 ICH1_0 FF HEX ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH2_1 ICH2_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HEX ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_2 ICH4_1 ICH4_0 FF HEX ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_0 FF HEX ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HEX ICH7_7 ICH6_6 ICH7_5 ICH7_4 ICH7_3 ICH7_1 ICH7_0 FF HEX ICH8_7 ICH8_6<	14							BST1	BSTO	2	HE>
ICH2_7 ICH2_6 ICH2_5 ICH2_4 ICH2_3 ICH2_2 ICH2_1 ICH2_0 FF HE2 ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HE2 ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_2 ICH4_1 ICH4_0 FF HE2 ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_0 FF HE2 ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_0 FF HE2 ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HE2 ICH7_7 ICH6_6 ICH7_5 ICH7_4 ICH7_3 ICH7_2 ICH7_1 ICH7_0 FF HE2 ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HE2 ICH8_7<	FO	ICH0_7	ICH0_6	ICH0_5	ICH0_4	ICH0_3	ICH0_2	ICH0_1	ICH0_0	FF	HEX
ICH3_7 ICH3_6 ICH3_5 ICH3_4 ICH3_3 ICH3_2 ICH3_1 ICH3_0 FF HE2 ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_2 ICH4_1 ICH4_0 FF HE2 ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_0 FF HE2 ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HE2 ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HE2 ICH7_7 ICH6_6 ICH7_5 ICH7_4 ICH7_3 ICH7_2 ICH7_1 ICH7_0 FF HE2 ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HE2 ICH8_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_2 ICH9_1 ICH9_0 FF HE2	F1	ICH1_7	ICH1_6	ICH1_5	ICH1_4	ICH1_3	ICH1_2	ICH1_1	ICH1_0	FF	HEX
ICH4_7 ICH4_6 ICH4_5 ICH4_4 ICH4_3 ICH4_2 ICH4_1 ICH4_0 FF HE2 ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_0 FF HE2 ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HE2 ICH7_7 ICH7_6 ICH7_5 ICH7_4 ICH7_3 ICH7_2 ICH7_1 ICH7_0 FF HE2 ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HE2 ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HE2 ICH9_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_1 ICH9_0 FF HE2	F2	ICH2_7	ICH2_6	ICH2_5	ICH2_4	ICH2_3	ICH2_2	ICH2_1	ICH2_0	FF	HEX
ICH5_7 ICH5_6 ICH5_5 ICH5_4 ICH5_3 ICH5_2 ICH5_1 ICH5_0 FF HEX ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HEX ICH7_7 ICH7_6 ICH7_5 ICH7_4 ICH7_3 ICH7_2 ICH7_1 ICH7_0 FF HEX ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HEX ICH9_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_2 ICH9_1 ICH9_0 FF HEX	F3	ICH3_7	ICH3_6	ICH3_5	ICH3_4	ICH3_3	ICH3_2	ICH3_1	ICH3_0	FF	HEX
ICH6_7 ICH6_6 ICH6_5 ICH6_4 ICH6_3 ICH6_2 ICH6_1 ICH6_0 FF HEX ICH7_7 ICH7_6 ICH7_5 ICH7_4 ICH7_3 ICH7_2 ICH7_1 ICH7_0 FF HEX ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HEX ICH9_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_2 ICH9_1 ICH9_0 FF HEX	F4	ICH4_7	ICH4_6	ICH4_5	ICH4_4	ICH4_3	ICH4_2	ICH4_1	ICH4_0	FF	HEX
ICH7_7 ICH7_6 ICH7_5 ICH7_4 ICH7_3 ICH7_2 ICH7_1 ICH7_0 FF HEX ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HEX ICH9_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_2 ICH9_1 ICH9_0 FF HEX	F5	ICH5_7	ICH5_6	ICH5_5	ICH5_4	ICH5_3	ICH5_2	ICH5_1	ICH5_0	FF	HEX
ICH8_7 ICH8_6 ICH8_5 ICH8_4 ICH8_3 ICH8_2 ICH8_1 ICH8_0 FF HED ICH9_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_2 ICH9_1 ICH9_0 FF HED	F6	ICH6_7	ICH6_6	ICH6_5	ICH6_4	ICH6_3	ICH6_2	ICH6_1	ICH6_0	FF	HE
ICH9_7 ICH9_6 ICH9_5 ICH9_4 ICH9_3 ICH9_2 ICH9_1 ICH9_0 FF HE	F7	ICH7_7	ICH7_6	ICH7_5	ICH7_4	ICH7_3	ICH7_2	ICH7_1	ICH7_0	FF	HEX
	F8	ICH8_7	ICH8_6	ICH8_5	ICH8_4	ICH8_3	ICH8_2	ICH8_1	ICH8_0	FF	HEX
ICHG_7 ICHG_6 ICHG_5 ICHG_4 ICHG_3 ICHG_2 ICHG_1 ICHG_0 FF HE>	F9	ICH9_7	ICH9_6	ICH9_5	ICH9_4	ICH9_3	ICH9_2	ICH9_1	ICH9_0	FF	HE>
	FA	ICHG_7	ICHG_6	ICHG_5	ICHG_4	ICHG_3	ICHG_2	ICHG_1	ICHG_0	FF	HEX
	F9 FA										ĺ
			RESERVED								_
RESERVED			OFF = 0					DEFAULT C	ONF	SEND	
			ON = 1					U			J

Figure 5. Register Table Window

8.1.5 **TEST Window**

This window allows the User to program the following Sequences:

🏓 KIT34844 Test	
freescale semiconductor	
FPWM Sequence	DEFAULT CONFIGURATION
	Enable CHIP ON OFF
DPWM Sequence	SET I2C ON OFF
	CLRI2C ON OFF
CHEN Sequence	PIN ON OFF
	NIN ON OFF
ICH Sequence	CLEAR FAIL ON OFF
READY	STROBE ON OFF
Be careful, some tests take a whi delays specified on tests	le, like CHEN Sequence due to
KIT 34844 GUI Test	

Figure 6. Test Window

- FPWM: Increments Frequency over the whole PWM Range in all channels (100 to 25000 Hz)
- DPWM: Performs a sweep of the Duty Cycle on all the channels from 0 to 100%
- CHEN Sequence: Turns on one channel at the time.
- ICH Sequence: Turn on one channel at the time and increases the LED current gradually in the channel being turn on.
- STROBE: This Button activates Strobe Mode.

8.2 Write Registers

Following table shows all write registers. Registers in grey are reserved. Register values are in Hexadecimal. [I^2C Device Address = 76h (1110110b)]

REG / DB	D7	D6	D5	D4	D3	D2	D1	D0
00	OVP3	OVP2	OVP1	OVP0		NINEN	PINEN	EN
01							CLRI2C	SETI2C
04			FPWM5	FPWM4	FPWM3	FPWM2	FPWM1	FPWM0
05			FPWM11	FPWM10	FPWM9	FPWM8	FPWM7	FPWM6
06			FPWM17	FPWM16	FPWM15	FPWM14	FPWM13	FPWM12
07	DPWM7	DPWM6	DPWM5	DPWM4	DPWM3	DPWM2	DPWM1	DPWM0
08				CHEN4	CHEN3	CHEN2	CHEN1	CHEN0
09	STRB	CLRFAIL	ALL_OFF	CHEN9	CHEN8	CHEN7	CHEN6	CHEN5
14							BST1	BST0
F0	ICH0_7	ICH0_6	ICH0_5	ICH0_4	ICH0_3	ICH0_2	ICH0_1	ICH0_0
F1	ICH1_7	ICH1_6	ICH1_5	ICH1_4	ICH1_3	ICH1_2	ICH1_1	ICH1_0
F2	ICH2_7	ICH2_6	ICH2_5	ICH2_4	ICH2_3	ICH2_2	ICH2_1	ICH2_0
F3	ICH3_7	ICH3_6	ICH3_5	ICH3_4	ICHG_3	ICH3_2	ICH3_1	ICH3_0
F4	ICH4_7	ICH4_6	ICH4_5	ICH4_4	ICH4_3	ICH4_2	ICH4_1	ICH4_0
F5	ICH5_7	ICH5_6	ICH5_5	ICH5_4	ICH5_3	ICH5_2	ICH5_1	ICH5_0
F6	ICH6_7	ICH6_6	ICH6_5	ICH6_4	ICH6_3	ICH6_2	ICH6_1	ICH6_0
F7	ICH7_7	ICH7_6	ICH7_5	ICH7_4	ICH7_3	ICH7_2	ICH7_1	ICH7_0
F8	ICH8_7	ICH8_6	ICH8_5	ICH8_4	ICH8_3	ICH8_2	ICH8_1	ICH8_0
F9	ICH9_7	ICH9_6	ICH9_5	ICH9_4	ICH9_3	ICH9_2	ICH9_1	ICH9_0
FA	ICHG_7	ICHG_6	ICHG_5	ICHG_4	ICHG_3	ICHG_2	ICHG_1	ICHG_0

8.3 Register Description

REGISTER NAME	DEFAULT VALUE (HEX)	DESCRIPTION
EN	1	Chip Enable by software. This signal is 'OR'ed with external EN (0=off, 1 =on)
PINEN	1	PIN pin enable (0=off, 1 =on) (Equation 3 & Equation 5)
NINEN	1	NIN pin enable (0=off, 1 =on) (Equation 4 & Equation 5)
OVP[3:0]	F	OVP voltage
SETI2C	0	SET I ² C communication (Disable SM-Bus Mode)
CLRI2C	0	Clear set I ² C
FPWM[17:0]	300	PWM Frequency (Equation 1)
DPWM[7:0]	FF	PWM Duty Cycle (FFh =100%)
CHEN[9:0]	3FF	Channel Enable (0=off, 1=on)
ALL_OFF	0	All 10 channels OFF at the same. In order to reactivate channels this bit should be clear.
CLRFAIL	0	Clear fail if channels are re-enable.
STRB	0	Strobe MODE (0=Parallel, 1=Strobe)
BST[1:0]	2	Boost Frequency (150,300,600,1200 kHz) [0h=150Hz]
ICH#[7:0]	FF	Channel Current Program (FFh = Maximum Current)
ICHG[7:0]	FF	Global Current Program (Equation 2)

8.4 OVP Table

REGISTER (HEX)	OVP VALUE (VOLTS)
2	11
3	15
4	19
5	23
6	27
7	31
8	35
9	39
A	43
В	47
С	51
D	55
E	59
F	62

Using Graphical User Interface (GUI)

8.5 Current and Frequency Equations

In the following equations all registers values should be in Decimal. Do not set a current higher than 50mA through LED Channels.

PWM Frequency	Eqn. 1
$PWMFrequency[Hz] = \frac{19.2Mhz}{FPWM[RegisterValue]}$	
Current on LED Channel (PIN and NIN mode disable)	Eqn. 2
$Current[A] = \frac{ICH[RegisterValue]}{RSET[ohms]}$	
Current on LED Channel (PIN mode)	Eqn. 3
Current[A] = $\frac{VPIN[Volts] \times ICH[RegisterValue]}{RSET[ohms]}$	
Current on LED Channel (NIN mode)	Eqn. 4
$Current[A] = \frac{(2.048 - VNIN)[Volts] \times ICH[RegisterValue]}{RSET[ohms]}$	
Current on LED Channel (PIN+NIN mode)	Eqn. 5
$Current[A] = \frac{(2.048 - VNIN + VPIN)[Volts] \times ICH[RegisterValue]}{RSET[ohms]}$	

9 LED Load Board Configuration (10 Channels x 16 LEDs)

Figure 7. LED Load Board

Jumper Function:

- Top horizontal jumpers: Channel strings enabled. This LED Load Board has only 10 Channels populated.
- Bottom horizontal jumpers : Connect the LED Channels to the voltage at the boost.
- Vertical jumpers: Short circuit LEDs

10 EVB Schematic (1) - MC34844 Section

Figure 8. EVB Schematic (1)

KIT34844EPEVME Evaluation Board, Rev. 1.0

11 EVB Schematic (2) - MC34844 Section

Figure 9. EVB Schematic (2)

12 EVB Schematic (3) - MC34844 Section

Figure 10. EVB Schematic (3)

13 EVB Schematic (4) - USB to I²C Section

Figure 11. EVB Schematic (4)

14 EVB Schematic (5) - USB to I²C Section

Figure 12. EVB Schematic (5)

Board Layout

15 Board Layout

15.1 Assembly Layer Top (x1.75)

Figure 13. Assembly Layer Top

15.2 Silk Screen Top (x1.75)

Figure 14. Silk Screen Top

15.3 Top Layer Routing (x1.75)

Figure 15. Top Layer Routing

Figure 16. Inner Layer 1 - GND Plane

Board Layout

15.5 Inner Layer 2 Routing (x1.75)

Figure 17. Inner Layer 2 Routing

15.6 Bottom Layer - GND Plane(Mirrored, x1.75)

Figure 18. Bottom Layer - GND Plane

Board Layout

15.7 Silk Screen Bottom - (Mirrored, x1.75)

Figure 19. Silk Screen Bottom

15.8 Fabrication Drawing

	DRILL CH,	ART: TOP to BOT	ТОМ	
	ALL UN	ITS ARE IN MILS		
FIGURE	SIZE	TOLERANCE	PLATED	QTY
•	13.0	+ 3 . 0 / - 3 . 0	PLATED	104
	30.0	+ 3 . 0 / - 3 . 0	PLATED	2
o	35.0	+ 3 . 0 / - 3 . 0	PLATED	12
0	36.0	+ 3 . 0 / - 3 . 0	PLATED	4
0	39.4	+ 3 . 0 / - 3 . 0	PLATED	5
\$	39.4	+ 3 . 0 / - 3 . 0	PLATED	1
Δ	40.0	+ 3 . 0 / - 3 . 0	PLATED	46
0	47.2	+ 3 . 0 / - 3 . 0	PLATED	8
0	90.0	+ 3 . 0 / - 3 . 0	PLATED	4
	91.0	+ 3 . 0 / - 3 . 0	PLATED	2
\bigcirc	130.0	+ 3 . 0 / - 3 . 0	PLATED	4
A	47.0	+ 3 . 0 / - 3 . 0	NON - PLATED	1

Figure 20. Fabrication Drawing

16 EVB Board BOM

Schematic Designator	Device	Туре	Description	Manufacturer PN
Freescale Com	onents			
U1	MC34844EP	qfn32	IC DRV 10 Channel LED 1.2MHz 7-30V QFN 32	MC34844EP
U2	MC9S08JM60CGTE	qfn48	IC MCU 8BIT 48MHZ 60KB FLASH 2.7-5.5V QFN48	MC9S08JM60CGTE
Capacitors	1	1		
C1	0.1UF	CC0603	CAP CER 0.1UF 50V 10% X7R 0603	GRM188R71H104KA93D
C2	47UF	CCE63X55	CAP ALEL 47UF 35V 20% SMT	UWT1V470MCL1GS
C3	2.2uF	CC0603_OV	CAP CER 2.2UF 16V 10% X5R 0603	GRM188R61C225KE15D
C10	2.2uF	CC0603_OV	CAP CER 2.2UF 16V 10% X5R 0603	GRM188R61C225KE15D
C11	2.2uF	CC0603_OV	CAP CER 2.2UF 16V 10% X5R 0603	GRM188R61C225KE15D
C5	4.7uF	CCE63X55	CAP ALEL 4.7UF 80V 20% SMT	EEE-FK1K4R7P
C6	4.7uF	CCE63X55	CAP ALEL 4.7UF 80V 20% SMT	EEE-FK1K4R7P
C7	2.2uF	cc1210	CAP CER 2.2UF 100V 10% X7R 1210	GRM32ER72A225KA35L
C8	2.2uF	cc1210	CAP CER 2.2UF 100V 10% X7R 1210	GRM32ER72A225KA35L
C9	100PF	CC0603	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C12	100PF	CC0603	CAP CER 100PF 50V 10% X7R 0603	C0603X7R500-101KNP
C14	100PF	CC0603	CAP CER 100PF 50V 10% X7R 0603	C0603X7R500-101KNP
C16	100PF	CC0603	CAP CER 100PF 50V 10% X7R 0603	C0603X7R500-101KNP
C13	10PF	CC0603_OV	CAP CER 10PF 50V 1% C0G 0603	C0603C100F5GAC
C15	10PF	CC0603_OV	CAP CER 10PF 50V 1% C0G 0603	C0603C100F5GAC
C40	10PF	CC0603_OV	CAP CER 10PF 50V 1% C0G 0603	C0603C100F5GAC
C41	10PF	CC0603_OV	CAP CER 10PF 50V 1% C0G 0603	C0603C100F5GAC
C17	56 PF	CC0603	CAP CER 56PF 100V 5% C0G 0603	C0603C0G101-560JNE
C18	1800PF	CC0603	CAP CER 1800PF 50V 5% C0G 0603	C0603C0G500182JN
C28	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C29	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C30	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C31	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C32	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C33	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C34	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C35	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C36	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C37	100PF	CC0603_OV	CAP CER 100PF 100V 5% C0G 0603	C0603C0G101-101JNE
C38	0.10UF	CC0603	CAP CER 0.10UF 16V 5% X7R 0603	0603YC104JAT2A
C42	0.10UF	CC0603	CAP CER 0.10UF 16V 5% X7R 0603	0603YC104JAT2A
C39	4.7UF	CASE_A	CAP TANT 4.7UF 10V 10% 3216-18	TAJA475K010R
C43	4.7UF	CASE_A	CAP TANT 4.7UF 10V 10% 3216-18	TAJA475K010R
C44	22PF	CC0603_OV	CAP CER 22PF 16V 1% COG 0603	C0603C220F4GAC
C45	22PF	CC0603_OV	CAP CER 22PF 16V 1% COG 0603	C0603C220F4GAC
C46	10UF	CC1210	CAP CER 10UF 35V +80%/-20% Y5V 1210	GMK325F106ZH

EVB Board BOM

Schematic Designator	Πονίςο	Туре	Description	Manufacturer PN
Diodes				
D1	V12P10-E3/86A	to_227a	DIODE SCH 12A 100V SMPC	V12P10-E3/86A
D2	LED ORANGE	0603led	LED OR SGL 20MA 0603	LO L29K-J2L1-24-Z
D3	HSMG-C170	HSMX-C170	LED GREEN SGL 2.2V 20MA 0805	HSMG-C170
Fuses				
F1	0.5A	IND_1210	FUSE PLYSW 0.5A 13.2V SMT	MICROSMD050F-2
Headers and C	Connectors			
J4	HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J5	HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J6	 HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J10	 HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J11	 HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J12	 HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J13	HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J14	 HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J15	HDR_1X3	HDR103	HDR 1X3 TH 100MIL SP 330H AU	TSW-103-07-G-S
J7	TB2	con2x2	CON 2 TB TH 3.5MM SP SN	1885180000
J8	TB2	con2x2	CON 2 TB TH 3.5MM SP SN	1885180000
19	HDR_1X2	HDR102	HDR 1X2 TH 100MIL SP 375H AU	826629-2
J16	HDR_1X2	HDR102	HDR 1X2 TH 100MIL SP 375H AU	826629-2
J17	HDR_1X2	HDR102	HDR 1X2 TH 100MIL SP 375H AU	826629-2
J29	HDR_1X2	HDR102	HDR 1X2 TH 100MIL SP 375H AU	826629-2
J27	USB_TYPE_B	CON_USB	CON 2X2 USB TYPE B RA SKT SHLD	2UB1505-000101
J28	HDR 2X3	hdr203_m20	HDR 2X3 TH 2.54MM CTR 340H AU	M20-9980345
J30	B12B-XASK-1N-A	hdr_12_xask	HDR 1X12 TH 2.5MM SP 346MIL SN	B12B-XASK-1N-A
J31	HDR_1X8	JUMP1X8	HDR 1X8 TH 100MIL SP 330H AU	TSW-108-07-G-S
Inductors			•	
L1	22UH	10p4x10p4	IND PWR 22UH@100KHZ 2.25A 20% SMT	B82464G4223M
L2	HI1812V101R-10	IND_1812	IND FER 100 OHM@100MHZ 8A 25% SMD/1812	HI1812V101R-10
L3	HI1812V101R-10	IND_1812	IND FER 100 OHM@100MHZ 8A 25% SMD/1812	HI1812V101R-10
Resistors		•	·	·
R1	0	RC1206_OV	RES MF ZERO OHM 1/4W 1206	CRCW12060000Z0EA
R2	0	 RC1206_OV	RES MF ZERO OHM 1/4W 1206	CRCW12060000Z0EA
R3	5.1K	 RC0603	RES MF 5.1K 1/10W 1% 0603	RK73H1JTTD5101F
R8	5.1K	RC0603	RES MF 5.1K 1/10W 1% 0603	RK73H1JTTD5101F
R13	5.1K	RC0603	RES MF 5.1K 1/10W 1% 0603	RK73H1JTTD5101F
R15	5.1K	RC0603	RES MF 5.1K 1/10W 1% 0603	RK73H1JTTD5101F
२४	10.2K	RC0603	RES MF 10.2K 1/10W 1% 0603	RK73H1JTTD1022F
R5	10.2K	RC0603	RES MF 10.2K 1/10W 1% 0603	RK73H1JTTD1022F
R6	100K	pot3_3224w	RES POT 100K 1/4W 10% 5 TURNS WSH SMT	3214W-1-104E
R11	100K	pot3_3224w	RES POT 100K 1/4W 10% 5 TURNS WSH SMT	3214W-1-104E
R12	100K	pot3 3224w	RES POT 100K 1/4W 10% 5 TURNS WSH SMT	3214W-1-104E

KIT34844EPEVME Evaluation Board, Rev. 1.0

EVB Board BOM

Schematic Designator	Device	Туре	Description	Manufacturer PN
Resistors (Cont	inued)			
R17	100K	pot3_3224w	RES POT 100K 1/4W 10% 5 TURNS WSH SMT	3214W-1-104E
R7	1.2K	RC0603_OV	RES MF 1.2K 1/10W 1% 0603	RK73H1JTTD1201F
R9	1.2K	RC0603_OV	RES MF 1.2K 1/10W 1% 0603	RK73H1JTTD1201F
R10	5.6K	RC0603	RES MF 5.6K 1/10W 1% 0603	RK73H1JTTD5601F
R14	309.0K	RC0603	RES MF 309.0K 1/10W 1% 0603	RK73H1JTTD3093F
R16	3.3K	RC0603	RES MF 3.30K 1/10W 1% 0603	RK73H1JTTD3301F
R18	100K	RC0603	RES MF 100K 1/10W 5% 0603	CR0603-JW-104ELF
R19	22K	RC0603	RES MF 22.0K 1/10W 1% 0603	RK73H1JTTD2202F
R21	33	RC0603_OV	RES MF 33.0 OHM 1/10W 1% 0603	RK73H1JTTD33R0F
R24	33	RC0603_OV	RES MF 33.0 OHM 1/10W 1% 0603	RK73H1JTTD33R0F
R22	1.50K	RC0603_OV	RES MF 1.50K 1/10W 1% 0603	RK73H1JTTD1501F
R23	1.50K	RC0603_OV	RES MF 1.50K 1/10W 1% 0603	RK73H1JTTD1501F
R26	1.50K	RC0603_OV	RES MF 1.50K 1/10W 1% 0603	RK73H1JTTD1501F
R25	1.0M	RC0603	RES MF 1.0M 1/10W 1% 0603	RK73H1JTTD1004F
R28	270	RC0603	RES MF 270.0 OHM 1/10W 1% 0603	RK73H1JTTD2700F
R29	4.70K	RC0603_OV	RES MF 4.70K 1/10W 1% 0603	RK73H1JTTD4701F
R30	4.70K	RC0603_OV	RES MF 4.70K 1/10W 1% 0603	RK73H1JTTD4701F
Test Points			·	
TP1	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP2	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP3	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP4	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP5	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP6	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP7	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP8	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP9	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP15	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP16	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP21	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP22	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP26	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
TP27	TEST POINT	tp_059mil	TEST POINT PIN .138X.059 SMT	C12000B
XTAL	•		•	
Y1	12MHZ	XTL_HC49S	XTAL 12.000MHZ SER TH	HC49US12.000MABJ-UT

Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or tables. While Freescale offers recommendations in this configuration, it is the customer's responsibility to validate their application

17 References

Following are URLs where you can obtain information on other Freescale products and application solutions:

Description	URL
Data Sheet	www.freescale.com/files/analog/doc/data_sheet/MC34844.pdf
Freescale's Web Site	www.freescale.com
Freescale's Analog Web Site	www.freescale.com/analog
Freescale's Power Management Web Site	www.freescale.com/pm
Freescale's LED Drivers	www.freescale.com/webapp/sps/site/taxonomy.jsp?code=LEDBLDRIVER

18 Revision History

REVISION	DATE	DESCRIPTION OF CHANGES	
1.0	10/2008	Initial Release	

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2008. All rights reserved.

KT34844UG Rev. 1.0 10/2008