

U-Boot v2009 Reference Manual

 90001129_B

2

 2012 Digi International Inc.
 All Rights Reserved.

Digi, Digi International, the Digi logo, ConnectCore Wi-MX51, ConnectCore Wi-MX52, and ConnectCard for
i.MX28 are trademarks or registered trademarks of Digi International, Inc.

All other trademarks mentioned in this document are the property of their respective owners.

Information in this document is subject to change without notice and does not represent a commitment on
the part of Digi International.

Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of fitness or merchantability for a particular purpose. Digi may make
improvements and/or changes in this manual or in the product(s) and/or the program(s) described in this
manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes may be incorporated in new editions of the publication.

Digi International Inc.
11001 Bren Road East
Minnetonka, MN 55343 (USA)
 +1 877 912-3444 or +1 952 912-3444
http://www.digi.com

http://www.digi.com/�

3

Contents

1. Conventions used in this manual ... 5

2. Acronyms and Abbreviations ... 6

3. Introduction .. 7
3.1 What is a boot loader? ... 7
3.2 What is U-Boot? ... 7
3.3 Features of U-Boot ... 7

3.3.1 Customizable footprint .. 7
3.3.2 Monitor .. 7
3.3.3 Variables ... 7
3.3.4 Ethernet and USB ... 8
3.3.5 Numbers ... 8

3.4 The boot process ... 8

4. U-Boot commands ... 9
4.1 Overview .. 9
4.2 Built-in commands .. 9

4.2.1 Information commands ... 10
4.2.2 MII commands .. 11
4.2.3 Network commands .. 11
4.2.4 USB commands .. 12
4.2.5 Memory commands .. 12
4.2.6 Serial port commands ... 13
4.2.7 Environment variables commands .. 13
4.2.8 E-Fuses/OTP bits .. 13

5. Environment variables .. 15
5.1 Overview .. 15
5.2 Simple and recursive variables .. 15
5.3 Scripts .. 15
5.4 System variables .. 16

5.4.1 Common system variables .. 16
5.4.2 Network related variables ... 17
5.4.3 Dynamic variables ... 17
5.4.4 User keys .. 18
5.4.5 Protected variables ... 18
5.4.6 Hostname ... 18

6. Network interfaces ... 19
6.1 Number of interfaces .. 19
6.2 Primary network interface .. 19
6.3 Active network interface ... 19

7. Bootscript ... 20
7.1 Bootscript process .. 20
7.2 Creating a bootscript .. 20

7.2.1 Creating a bootscript in Windows.. 21
7.3 Configuration for launching the bootscript ... 21
7.4 Bootscript restrictions ... 21

8. Boot commands ... 22
8.1 Overview .. 22
8.2 Reading images into RAM ... 22

8.2.1 From Ethernet ... 22
8.2.2 From USB ... 22

4

8.2.3 From SD/MMC card .. 23
8.2.4 From SATA disk .. 23
8.2.5 From flash ... 24

8.3 Booting images in RAM .. 24
8.4 Direct booting ... 25

8.4.1 Boot examples .. 26
8.5 Automatic booting .. 27

9. Using NVRAM ... 28
9.1 The 'flpart' command .. 28

9.1.1 A partition table entry .. 28
9.1.2 Changing the partition table .. 29

9.2 The ‘intnvram’ command .. 30
9.2.1 Mappings of variables ... 31

10. Firmware update commands .. 33
10.1 Overview .. 33
10.2 Updating flash with images in RAM ... 33
10.3 Direct updating ... 34

10.3.1 Update limits ... 35
10.3.2 TFTP on-the-fly update mechanism .. 36

11. Customize U-Boot .. 37
11.1 Overview .. 37
11.2 Silent Console .. 37
11.3 Video interface ... 38

11.3.1 Initialize video interface ... 38
11.3.2 Custom LCD displays ... 39
11.3.3 Selecting the primary video interface .. 40

11.4 Splash screen support ... 41
11.4.1 Creating a splash partition .. 41
11.4.2 Uploading a splash image ... 42
11.4.3 Initialize video interface ... 42

11.5 Dual boot mechanism .. 43
11.5.1 Overview ... 43
11.5.2 Enabling Dual boot mechanism .. 43
11.5.3 Dual boot modes ... 44
11.5.4 Detecting a corrupt system ... 45
11.5.5 Start up guarantee modes .. 46
11.5.6 Watchdog to reset a corrupt system ... 46
11.5.7 Update process in U-Boot ... 47
11.5.8 Additional notes on dual boot .. 47

12. Boot different operating systems ... 48
12.1 Media requirements ... 48
12.2 Booting the different operating systems ... 49

12.2.1 Boot commands .. 49
12.2.2 Choosing the operating system to boot ... 50

13. U-Boot development .. 51

14. Recovering a device .. 52
14.1 Using Digi J-Link .. 52
14.2 Loading a boot loader via USB .. 52
14.3 Loading a boot loader from SD/MMC card .. 53

14.3.1 ConnectCore for i.MX51 and ConnectCore for i.MX53 platforms.. 53
14.3.2 ConnectCard for i.MX28 ... 55
14.3.3 Preparing the hardware platform ... 57
14.3.4 Creating partitions in the bootable SD/MMC card ... 58

5

1. Conventions used in this manual

This list shows the typographical conventions used in this guide:

Style Used for file and directory names, variables in commands, URLs
and new terms.

Style In examples, to show the contents of files, the output from

commands, the C code.

Variables to be replaced with actual values are shown in italics.

Style Variable's names and commands.

In examples, to show the text that should be typed literally by the
user.

A prompt that indicates the action is performed in the target device.

$ A prompt that indicates the action is performed in the host
computer.

<field> A mandatory field that must be replaced with a value

[field] An optional field

[a|b|c] A field that can take one of several values

This manual also uses these frames and symbols:

This is a warning, it helps solve or to avoid common mistakes
or problems.

This is a hint, it contains useful information about a topic.

$ This is a host computer session
$ Bold text indicates what must be input

This is a target session
Bold text indicates what must be input

 This is an excerpt from a file
Bold text indicates what must be input

6

2. Acronyms and Abbreviations

BIOS Basic Input Output System

CPU Central Processing Unit

FAT File Allocation Table

I2C Inter-Integrated Circuit

MBR Master Boot Record

MII Media Independent Interface

NVRAM Non Volatile RAM

OS Operating System

PC Personal Computer

RAM Random Access Memory

TFTP Trivial File Transfer Protocol

USB Universal Serial Bus

7

3. Introduction

3.1 What is a boot loader?
Microprocessors can execute only code that exists in memory (either ROM or RAM), while
operating systems normally reside in large-capacity devices such as hard disks, CD-ROMs, USB
disks, network servers, and other permanent storage media.

When the processor is powered on, the memory doesn't hold an operating system, so special
software is needed to bring the OS into memory from the media on which it resides. This software
is normally a small piece of code called the boot loader. On a desktop PC, the boot loader resides
on the master boot record (MBR) of the hard drive and is executed after the PC's basic input output
system (BIOS) performs system initialization tasks.

In an embedded system, the boot loader’s role is more complicated because these systems rarely
have a BIOS to perform initial system configuration. Although the low-level initialization of the
microprocessor, memory controllers, and other board-specific hardware varies from board to board
and CPU to CPU, it must be performed before an OS can execute.

At a minimum, a boot loader for an embedded system performs these functions:

 Initializing the hardware, especially the memory controller

 Providing boot parameters for the OS

 Starting the OS

Most boot loaders provide features that simplify developing and updating firmware; for example:

 Reading and writing arbitrary memory locations

 Uploading new binary images to the board's RAM from mass storage devices

 Copying binary images from RAM into flash

3.2 What is U-Boot?
U-Boot is an open-source, cross-platform boot loader that provides out-of-box support for hundreds
of embedded boards and many CPUs, including PowerPC, ARM, XScale, MIPS, Coldfire, NIOS,
Microblaze, and x86.

For more information about the U-Boot project see http://sourceforge.net/projects/u-boot/ and
http://www.denx.de/wiki/DULG/Manual.

3.3 Features of U-Boot

3.3.1 Customizable footprint

U-Boot is highly customizable, to provide both a rich feature set and a small binary footprint.

3.3.2 Monitor

U-Boot has a command shell (also called a monitor) in which you work with U-Boot commands to
create a customized boot process.

3.3.3 Variables

U-Boot uses environment variables that can be read or written to and from non-volatile media. Use
these variables to create scripts of commands (executed one after the other) and to configure the
boot process.

http://sourceforge.net/projects/u-boot/�
http://www.denx.de/wiki/DULG/Manual�

8

3.3.4 Ethernet and USB

Because U-Boot can download a kernel image using either Ethernet or USB, no flash programming
is needed to test a new kernel. This prevents the deterioration of flash caused by repeated flash
erases and writes.

3.3.5 Numbers

Numbers used by U-Boot are always considered to be in hexadecimal format. For example, U-Boot
understands number 30100000 as 0x30100000.

3.4 The boot process
After power-up or reset, the processor loads the U-Boot boot loader in several steps.

 The processor does these steps:

 Executes a primary bootstrap that configures the interrupt and exception vectors, clocks,
and SDRAM

 Decompresses the U-Boot code from flash to RAM

 Passes execution control to the U-Boot

 U-Boot does these steps:

 Configures the Ethernet MAC address, flash, and serial console

 Loads the settings stored as environment variables in non-volatile memory

 After a few seconds (a length of time you can program), automatically boots the pre-
installed kernel

To stop the automatic booting (autoboot) of the pre-installed kernel, send a character to the serial port
by pressing a key from the serial console connected to the target. If U-Boot is stopped, it displays a
command line console (also called monitor).

U-Boot 2009.08 - DUB-1.0 - (Mar 17 2010 - 18:01:12) - GCC 4.3.2
for ConnectCore Wi-i.MX51 on a JSK Development Board

I2C: ready
NAND: 512 MB
DRAM: 512 MB
MMC: FSL_ESDHC: 0, FSL_ESDHC: 1
In: serial
Out: serial
Err: serial
Net: FEC0 [PRIME], smc911x-0
Hit any key to stop autoboot: 0
CCWMX51 #

9

4. U-Boot commands

4.1 Overview
U-Boot has a set of built-in commands for booting the system, managing memory, and updating an
embedded system’s firmware. By modifying U-Boot source code, you can create your own built-in
commands.

4.2 Built-in commands
For a complete list and brief descriptions of the built-in commands, at the U-Boot monitor prompt,
enter either of these commands:

 help

 ?

You will see a list similar to this one:

CCWMX51 # help
? - alias for 'help'
autoscr - DEPRECATED - use "source" command instead
base - print or set address offset
bdinfo - print Board Info structure
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
bootm - boot application image from memory
bootp - boot image via network using BOOTP/TFTP protocol
cmp - memory compare
coninfo - print console devices and information
cp - memory copy
crc32 - checksum calculation
date - get/set/reset date & time
dboot - Digi modules boot commands
dcache - enable or disable data cache
dhcp - boot image via network using DHCP/TFTP protocol
echo - echo args to console
envreset- Sets environment variables to default setting
erase_pt- Erases the partition
fatinfo - print information about filesystem
fatload - load binary file from a dos filesystem
fatls - list files in a directory (default /)
flpart - displays or modifies the partition table.
fuse - Fuse sub system
go - start application at address 'addr'
help - print online help
i2c - I2C sub-system
icache - enable or disable instruction cache
iminfo - print header information for application image
imxtract- extract a part of a multi-image
intnvram- displays or modifies NVRAM contents like IP or partition table
itest - return true/false on integer compare
loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line
loady - load binary file over serial line (ymodem mode)
loop - infinite loop on address range
md - memory display
mii - MII utility commands
mm - memory modify (auto-incrementing address)
mmc - MMC sub system
mmcinfo - mmcinfo <dev num>-- display MMC info
mtest - simple RAM read/write test
mw - memory write (fill)
nand - NAND sub-system
nboot - boot from NAND device

10

nfs - boot image via network using NFS protocol
nm - memory modify (constant address)
ping - send ICMP ECHO_REQUEST to network host
pmic - pmic register access
printenv- print environment variables
printenv_dynamic- Prints all dynamic variables
rarpboot- boot image via network using RARP/TFTP protocol
reboot - Perform RESET of the CPU
reset - Perform RESET of the CPU
run - run commands in an environment variable
saveenv - save environment variables to persistent storage
setenv - set environment variables
sleep - delay execution for some time
source - run script from memory
sspi - SPI utility commands
tftpboot- boot image via network using TFTP protocol
update - Digi modules update commands
usb - USB sub-system
usbboot – boot from USB device
version - print monitor version
CCWMX51 #

The available commands can vary according to the capabilities of your hardware platform.

For more information about a command, enter: help <command_name>

help run
run var [...]
 - run the commands in the environment variable(s) 'var'

As you enter the first letters of a command, U-Boot searches its list of built-in
commands until it finds a match. For example, if you enter save or sav or even
sa, U-Boot executes the saveenv command.

You need to enter enough letters for U-Boot to determine the command to
execute. For example, if you enter loa U-Boot cannot tell whether to execute
loadb, loads or loady, and you get an 'Unknown command' message.

4.2.1 Information commands

To get information, use these commands:

Command Description
bdinfo Prints board info structure
coninfo Prints console devices and information
date [MMDDhhmm[[CC]YY][.ss]] Gets / sets / resets system date/time
fatinfo <interface> <dev[:part]> Prints information about the file system from 'dev' on 'interface'
iminfo [addr ...] Prints header information for the application image starting at the

'addr' address in memory, including verification of the image
contents (magic number, header, and payload checksums).
This command works only for Linux kernel images.

nand bad Shows NAND bad blocks
nand info Shows available NAND devices
mii info <addr> Prints MII PHY info
version Displays U-Boot version and timestamp

11

4.2.2 MII commands

To access the Ethernet PHY use these commands:

Command Description
mii device Lists available devices
mii device <device name> Set current device
mii read <addr > <reg> Reads register 'reg' from MII PHY 'addr'
mii write <addr > <reg> <data> Writes 'data' to register 'reg' at MII PHY 'addr'
mii dump <addr > <reg> Displays data of register 'reg' from MII PHY 'addr'

The parameter addr and reg can be a number or a range e.g. 2-7.

The command mii dump is only usable for register 0-5.

4.2.3 Network commands

This table shows the network-related commands:

Command Description
bootp [loadAddress] [bootFilename] Boots the image over the network using the BootP/TFTP

protocol. If no argument is given, bootp takes the values from
the 'loadaddr' and 'bootfile' environment variables.

dhcp Requests an IP address from a DHCP server.

If the ‘autoload’ variable is set to ‘yes’, also transfers the file to
which the ‘bootfile’ environment variable points to the
‘loadaddr” RAM memory address by TFTP.

ping <pingAddress> Pings the IP address passed as parameter. If the other end
responds, you see this message:
 "host <pingAddress> is alive".

tftpboot [loadAddress] [bootfilename] Using FTP, transfers image 'bootfilename' into the RAM
address 'loadAddress'.

nfs [loadAddress] [host ip addr:bootfilename] Using NFS, transfers image 'bootfilename' into the RAM
address 'loadAddress'.

rarpboot [loadAddress] [bootfilename] Using RARP/TFTP, transfers image into the RAM address
'loadAddress'.

sntp Gets the date and time from the NTP server to which the
'ntpserverip' environment variable' points.

If the autostart variable is set to 'yes', all these commands
(except ping and sntp) boot the transferred image by calling
the bootm command.
bootm does not work for WinCE images. If you are working
with a WinCE image file, either set the autostart variable to
'no' or delete it before executing these network commands.

12

4.2.4 USB commands

To access the USB subsystem, use the usb command, followed by its operations:

Command Description
usb reset Resets (rescans) USB controller
usb stop [f] Stops USB [f]=force stop
usb tree Shows USB device tree
usb info [dev] Shows available USB devices
usb storage Shows details of USB storage devices
usb dev [dev] Shows or set current USB storage device
usb part [dev] Prints the partition table of one or all USB storage devices
usb read addr blk# cnt Reads 'cnt' blocks starting at block 'blk#' to RAM address

'addr'
fatload usb <dev[:part]> <addr> <filename> Reads 'filename' image from FAT partition 'part' of USB

device 'dev' into the RAM memory address 'addr'.
If part is not specified, partition 1 is assumed.

ext2load usb <dev[:part]> <addr>
<filename>

Reads 'filename' image from EXT2/3 partition 'part' of USB
device 'dev' into the RAM memory address 'addr'.
If part is not specified, partition 1 is assumed.

4.2.5 Memory commands

These commands manage RAM memory:

Command Description
cmp[.b, .w, .l] addr1 addr2 count Compares memory contents from address 'addr1' to 'addr2' for

as many 'count' bytes, words, or long words.
cp[.b, .w, .l] source target count Copies memory contents from address 'source' to 'target' for as

many 'count' bytes, words, or long words.
dcache [on|off] Turns data cache on or off.
erase_pt <name> Erases the partition 'name'. With flpart the 'name' can be found.
go addr [arg ...] Starts the application at address 'addr' passing 'arg' as

arguments.
md[.b, .w, .l] <address> [# of
objects]

Displays the contents of the memory at address 'addr' for as
many '[#of objects]' bytes, words, or long words.

mm[.b, .w, .l] <address> Lets you modify locations of memory, beginning at ‘address,’
which gets auto-incremented.

mw[.b, .w, .l] <address> <value >
[count]

Writes 'value' into 'address' for as many 'count' bytes, words, or
long words.

nm[.b, .w, .l] address Lets you modify a fixed location of memory.
nand[.jffs2] read <addr> <off>
<size>

Copies the memory contents from flash address 'off' to RAM
address 'addr' for as many 'size' bytes (only for NAND flash
memories). Bad block management is used, when using .jffs2.
The bad block management detects bad blocks and skips them.

nand[.jffs2] write <addr> <off>
<size>

Copies the memory contents from RAM address 'addr' to flash
address 'off' for as many 'size' bytes (NAND flash memories
only). Bad block management is used, when using .jffs2. The
bad block management detects bad blocks and skips them.

13

nand erase [off size] Erases 'size' bytes from address 'off'. Erases the entire device if
no parameters are specified (NAND flash memories only).
U-Boot skips bad blocks and shows their addresses.

nand dump[.oob] off Dumps NAND page at address 'off' with optional out-of-band
data (only for NAND flash memories).

nboot address dev [off] Boots image from NAND device dev at offset off (transferring it
first to RAM address).

protect [on|off] ... Protects/unprotects NOR sector(s).

4.2.6 Serial port commands

Use these commands to work with the serial line:

Command Description
loadb [off] [baud] Loads binary file over serial line with offset 'off' and baud

rate 'baud' (Kermit mode)
loads [off] Loads S-Record file over the serial line with offset 'off'
loady [off] [baud] Loads binary file over the serial line with offset 'off' and

baud rate 'baud' (Ymodem mode)

4.2.7 Environment variables commands

To read, write, and save environment variables, use these commands:

Command Description
printenv [name ...] If no variable is given as argument, prints all U-Boot

environment variables.
If a list of variable names is passed, prints only those variables.

printenv_dynamic Prints all dynamic variables
envreset Overwrites all current variables values to factory default values.

Does not reset the 'wlanaddr' or 'ethaddr' variables or any other
persistent settings stored in NVRAM (see section 9.2).

saveenv Writes the current variable values to non-volatile memory
(NVRAM).

setenv name [value] If no value is given, the variable is deleted. If the variable is
dynamic, it is reset to the default value.
If a value is given, sets variable 'name´ to value 'value'.

4.2.8 E-Fuses/OTP bits

The i.MX51, i.MX53, and i.MX28 processors have a special feature: the E-Fuses (OTP or One
Time Programmable bits on i.MX28). E-Fuses are electrically one-time erasable

On the i.MX51/i.MX53, storage space is divided into 4 banks (0..3), each of them containing rows
(for the detailed fuse map, see Chapter 6 in the i.MX51/i.MX53 documentation.) Each row is 1 byte.
To read or write fuses, you have to select the appropriate row of a bank. Only one row is readable
or writable at a time.

 fuses that allow
the user to store some bits of information, like a MAC address or an IMEI number.

On the i.MX28, storage space is divided into 32-bit words, with a total number of 40 (for the
detailed OTP map, see Chapter 20 On-Chip OTP of the i.MX28 documentation).

It is possible to write only ones. Writing a 1 means erasing a fuse. Writing zeros is not possible
because erased fuses cannot be restored. For example: if the IMEI’s first byte was set previously to
0x10, it’s possible to change it to 0x30, but not to 0x00.

14

Fuse rows (or OTP words) may be locked by setting a single fuse called 'fuse lock' (see Table 6-1
in Chapter 6 in the i.MX51/i.MX53 documentation, or see the word LOCK at offset 0x10 in the
i.MX28 documentation). If a certain fuse row (or OTP word) is locked, no further writes are allowed
to that row (or word).

To read, write and lock the E-Fuses, use the following commands:

For i.MX51/i.MX53

Command Description
iim read <bank> <row> Read out a fuse row
iim blow <bank> <row> <value> Writes an hex value into a fuse row

where <bank> is the bank index (0..3) and <row> is the row index (starting at 0 in each bank).

For i.MX28

Command Description
otp dump Dump all OTP bits
otp read <addr> [count] Read ‘count’ OTP registers (32-bits wide) starting at

‘addr’
otp blow <addr> <value> Blow OTP register at ‘addr’ with ‘value’
otp lock <addr> Lock OTP register at ‘addr’

Be extremely careful when using this command as erased
fuses cannot be recovered.
An incorrect programming of fuses might lead to a non-
working module.
Not all fuses at available for customer use. Please read the CPU
manual to understand which fuses you are free to use.

15

5. Environment variables

5.1 Overview
U-Boot uses environment variables to tailor its operation. The environment variables configure
settings such as the baud rate of the serial connection, the seconds to wait before auto boot, the
default boot command, and so on.

These variables must be stored in either non-volatile memory (NVRAM) such as an EEPROM or a
protected flash partition.

The factory default variables and their values also are stored in the U-Boot binary image itself. In
this way, you can recover the variables and their values at any time with the envreset command.

Environment variables are stored as strings (case sensitive). Custom variables can be created as
long as there is enough space in the NVRAM.

5.2 Simple and recursive variables
Simple variables have a name and a value (given as a string):

setenv myNumber 123456
printenv myNumber
myNumber=123456

To expand simple variables, enclose them in braces and prefix a dollar sign:

setenv myNumber 123456
setenv var This is my number: ${myNumber}
printenv var
var=This is my number: 123456

Recursive variables (or scripts) contain one or more variables within their own value. The inner
variables are not expanded in the new variable. Instead, they are expanded when the recursive
variable is run as a command, as shown here:

setenv dumpaddr md.b \${addr} \${bytes}
printenv dumpaddr
dumpaddr=md.b ${addr} ${bytes}
setenv addr 2C000
setenv bytes 5
run dumpaddr
0002c000: 00 00 00 00 00

You must use the back slash '\' before '$' to prevent variables from being expanded into other
variables’ values.

5.3 Scripts
In U-Boot, a script is made up of variables that contain a set of commands; the commands are
executed one after another.

Consider this variable:

printenv cmd1
setenv var val;printenv var;saveenv

If you were to run this script, with run cmd1 the var variable would be created with val value, the
value would be printed to the console, and the variables would be saved to either the EEPROM or
flash partition dedicated to variables.

run cmd1
var=val
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...

16

. done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors

Separate the commands in a script with semi-colons (;). As with recursive variables, this sign must
be preceded by a back-slash sign or it is considered the termination of the first command itself.

This is how you would save cmd1:

setenv cmd1 setenv var val\;printenv var\;saveenv

For running commands stored in variables, use the run command and its variables separated by
spaces:

setenv cmd1 setenv var val
setenv cmd2 printenv var
setenv cmd3 saveenv
run cmd1 cmd2 cmd3

See Chapter 6 to learn how to create a bootscript that automatically executes at
start up.

5.4 System variables
U-Boot uses several built-in variables:

5.4.1 Common system variables
Variable Description
autoload If set to "no" (or any string beginning with 'n'), the rarpboot, bootp, or

dhcp command performs a configuration lookup from the BOOTP /
DHCP server but does not try to load any image using TFTP.

autostart If set to "yes", an image loaded using the rarpboot, bootp, dhcp or
tftpboot commands is automatically started (by internally calling the
bootm command).

baudrate The baud rate of the serial connection
bootcmd Defines a command string that is automatically executed when the

initial countdown is not interrupted.
Executed only when the bootdelay variable is also defined.

bootdelay Seconds to wait before running the automatic boot process in
bootcmd

bootfile Name of the default image to load with TFTP
filesize Contains the size of the last file transferred by TFTP or USB
fileaddr The RAM address where the last file transferred by TFTP was placed
stdin Standard input system
stdout Standard output system
stderr Standard error output system
verify If set to 'n' or 'no,' disables the checksum calculation over the complete

image in the bootm command to trade speed for safety in the boot
process. Note that the header checksum is still verified.

17

5.4.2 Network related variables

The following variables are related to network:

Variable Description
ethaddr MAC address of the FIRST wired target's Ethernet interface
eth1addr MAC address of the SECOND wired target's Ethernet interface*
wlanaddr MAC address of the target's WLAN interface*
btaddr MAC address of Bluetooth adapter*
ipaddr IP address of the FIRST wired target's Ethernet interface
ipaddr1 IP address of the SECOND wired target's Ethernet interface*
ipaddr_wlan IP address of the target's WLAN interface*
netmask Subnet mask of the FIRST wired target's Ethernet interface
netmask1 Subnet mask of the SECOND wired target's Ethernet interface*
netmask_wlan Subnet mask of the target's WLAN interface*
dhcp Whether DHCP is enabled on the FIRST wired target's Ethernet interface
dhcp1 Whether DHCP is enabled on the SECOND wired target's Ethernet interface*
dhcp_wlan Whether DHCP is enabled on the target's WLAN interface*
ntpserverip NTP server IP address (for getting the date/time).
gatewayip IP address used as network gateway.
serverip IP address of the host PC (for remote connections like TFTP transfers).
dnsip1 IP of DNS server 1
dnsip2 IP of DNS server 2
ethprime Contains the name of the network interface to be used as PRIMARY interface
ethact Contains the name of the currently active network interface
hostname Contains the hostname of the device

* Not all modules have a wireless interface or a second wired network interface or a Bluetooth
adapter.

5.4.3 Dynamic variables

Depending on the module, the partitioning information, and so on, U-Boot generates some
variables "on the fly" if they do not already exist in U-Boot.

These variables can be overwritten with setenv, thus becoming standard U-Boot variables.
Dynamic variables which are not set with setenv also exist (they are automatically created), but
they cannot be printed with printenv.

Some of these variables are OS-specific for different OS implementations (Linux, Windows CE,
NET+OS). They provide special functionality for the OS running in the platform.

For more information, see the boot loader development chapter of your
development kit's documentation.

18

5.4.4 User keys

The development board in the kit may have two user buttons. If it does, U-Boot can detect which
one is pressed when it starts.

If you press either key when the boot loader is starting, the key1 or key2 variable is executed
before the bootcmd. This allows you to have different boot scripts, depending on the key pressed
during boot. Therefore, you can boot two different kernels, such as a dual Linux/Windows CE or
two versions of the same OS.

When the two keys are pressed during boot, both are detected as pressed, and the script key12 is
launched. If this variable is not defined, the scripts at variables key1 and key2 will be run (in this
order).

If the key1, key2 or key12 variables do not exist, or if no key is pressed, the normal bootcmd is
executed.

You can disable detection of user keys for customized hardware where these
keys don't exist. To do so, you need to reconfigure and recompile U-Boot. See
chapter 12 for information about U-Boot development.

5.4.5 Protected variables

Several variables are of great relevance for the system and are stored in a protected section of
NVRAM.

Some of these protected variables are, for example, the serial number of the module and the MAC
addresses of the network interfaces, which are programmed during production and normally should
not be changed.

5.4.6 Hostname

The environment variable hostname contains the name by which a device can be referred to in an
IPv6 enabled network. Although U-Boot does not support IPv6, having this variable in the NVRAM
allows the operating system to use its value to establish the hostname when the kernel has booted.

Although the user can set the hostname variable to anything they want, if the variable does not
previously exist its value defaults to a combination of the platform name plus the last three bytes of
the first wired MAC address (variable ethaddr).

For example, for a ConnectCore Wi-i.MX51 platform with a MAC 12:34:56:78:9A:BC, the hostname
would default to a value of CCWMX51-789ABC.

The auto-generated hostname variable is NOT automatically saved in NVRAM. The user must save
the auto-generated value or set and save a value of their own.

It is the responsibility of the operating system to retrieve the value of the hostname variable from
the NVRAM and set it appropriately in the system so that it is valid on the network.

19

6. Network interfaces

6.1 Number of interfaces
U-Boot is able to issue Ethernet communication using several interfaces. The supported network
interfaces are detected by U-Boot at start and their names are printed in the start messages:

U-Boot 2009.08 - DUB-1.0 - (Mar 17 2010 - 18:01:12) - GCC 4.3.2
for ConnectCore Wi-i.MX51 on a JSK Development Board

I2C: ready
NAND: 512 MB
DRAM: 512 MB
MMC: FSL_ESDHC: 0, FSL_ESDHC: 1
In: serial
Out: serial
Err: serial
Net: FEC0 [PRIME], smc911x-0
Hit any key to stop autoboot: 0
CCWMX51 #

The network interfaces are given the name of the driver plus an index number starting at 0. In the
example above two network interfaces have been detected: FEC0 and smc911x-0.

Although U-Boot can route communications through several
network interfaces it can only handle one IP address (the one
specified at variable ‘ipaddr’).

Notice that U-Boot may or may not support all the available network interfaces, depending on
configuration options. For example, the platform ccwmx51js only has support for the FEC0
interface, by default. To add support for the second wired Ethernet interface you need to enter the
configuration tool and enable it. Please refer to your OS development environment for information
about U-Boot configuration.

6.2 Primary network interface
By default, U-Boot will route Ethernet communications through the interface specified at
environment variable ethprime. Such interface will be marked as [PRIME] in the boot messages. If
this fails, U-Boot will try with the following available network interface (using the same IP address
specified in ‘ipaddr’).

6.3 Active network interface
U-Boot automatically sets the variable ethact to the name of the Ethernet interface that is currently
active. This variable can be changed on hot to force U-Boot to use a different network interface.

This variable is not persistent between resets. U-Boot will set
this variable to the interface that becomes active after reset.

20

7. Bootscript

The bootscript is a script that is automatically executed when the boot loader starts, and before the
OS auto boot process.

The bootscript allows the user to execute a set of predefined U-Boot commands automatically,
before proceeding with normal OS boot. This is especially useful for production environments and
targets which don’t have an available serial port for showing the U-Boot monitor.

7.1 Bootscript process
The bootscript works in the following way:

1. U-Boot checks the variable loadbootsc. If set to “no”, it continues its normal execution.

2. If the variable loadbootsc is set to “yes” (factory default value) U-Boot tries to download
the bootscript file with the filename stored in variable bootscript from the TFTP server IP
address defined at variable serverip (by default 192.168.42.1).

The default value of the bootscript variable is <platformname>-bootscript.

3. If the bootscript file is successfully downloaded, it is executed.

4. If any of the commands in the bootscript fails, the rest of the script is cancelled.

5. When the bootscript has been fully executed (or cancelled) U-Boot continues normal
execution.

7.2 Creating a bootscript
To create a bootscript file:

1. Create a plain text file with the sequence of U-Boot commands. It is recommended that the
last command sets the variable loadbootsc to “no”, to avoid the bootscript from executing
a second time.

For example, create a file called myscript.txt with the following contents:

setenv company digi
setenv bootdelay 1
printenv company
setenv loadbootsc no
saveenv

This script creates a new variable called company with value digi and sets the bootdelay
to one second. Finally it sets the variable loadbootsc to “no” so that U-Boot doesn’t try to
execute the bootscript in the future, and saves the changes.

2. Execute the mkimage tool (provided with U-Boot) with the file above as input file. Syntax is:
mkimage -T script -n "Bootscript" -C none -d <input_file> <output_file>

The name of the output file must be in the form <platformname>-bootscript, where
<platformname> must be replaced with your target’s platform name.

For example, to create the bootscript from the text file above and for a Connect Core Wi-
MX51 platform, go to the U-Boot directory and execute:

$ tools/mkimage -T script -n “Bootscript” -C none -d myscript.txt

ccwmx51js-bootscript

21

7.2.1 Creating a bootscript in Windows

There are some important caveats when producing a bootscript in a Windows host PC.

7.2.1.1 Final carriage return

When creating the plain text file with the sequence of commands, make sure that the last command
in the sequence contains a final carriage return (in other words, a blank line at the end of the file).
Otherwise, the last command in the sequence may not execute.

7.2.1.2 Windows line-end characters

If developing U-Boot in a Windows host (using Cygwin), the plaintext file with the list of commands
might contain incorrect line-end characters. If this is the case, the plaintext file must be converted
first to UNIX line-end format before generating the bootscript. This can be done using the dos2unix
application over the file, before calling mkimage:

$ dos2unix.exe myscript.txt

The prebuilt mkimage tool is not included with the Cygwin
development environment. This tool is built the first time you
compile U-Boot under Cygwin.

7.3 Configuration for launching the bootscript
Once the bootscript file has been created two more steps are needed to allow the target to run the
bootscript at start.

1. Place the bootscript file into the TFTP exposed folder, so that the target is able to find it
when it boots.

2. The U-Boot variable serverip of the target must point to the host PC with the TFTP server.
You have two options:

a. Connect to the target’s U-Boot monitor and set the serverip variable to the IP of
your host PC.

b. If you don’t have access to the U-Boot monitor or simply don’t want to have any
user interaction with the target (for example in a production environment), configure
the host PC Ethernet card’s IP to the factory default IP address stored in variable
serverip, which is 192.168.42.1.

Once all steps have been completed, power up the target. It will connect to the host PC and will
download the bootscript to RAM; execute it, and continue booting as usual.

7.4 Bootscript restrictions
The Digi U-Boot command flpart (for partitioning the Flash) is a menu-driven program, which
expects key presses for different user selections. This command may not work in a bootscript. For
repartitioning the Flash, use the command intnvram instead (refer to section 9.2 for more
information).

22

8. Boot commands

8.1 Overview
U-Boot runs code placed in RAM, although it can also read data from other media. The boot
process normally takes place in two steps:

 Reading the OS image from media (Ethernet, USB, MMC, flash) into RAM
 Jumping to the first instruction of the image in RAM

8.2 Reading images into RAM

8.2.1 From Ethernet

The most common way to boot an image during development is by transferring it using TFTP over
the Ethernet interface. This can be done with the tftpboot command, passing:

 The address of RAM in which to place the image

 The image file name

tftpboot <loadAddress> <bootfilename>

The TFTP transfer takes place between the serverip address (host) and the ipaddr address
(target). The host must be running a TFTP server and have bootfilename archive placed in the
TFTP-exposed directory.

For Linux kernel images, if the autostart variable is set to yes, this command directly boots the
kernel after downloading it.

8.2.2 From USB

Another way to boot an image is by reading it from a USB flash storage device. The USB disk must
be formatted either in FAT, ext2, or ext3 file system.

To read an image from a USB flash disk formatted in FAT, enter:

usb reset
fatload usb <dev>[:partition] <loadAddress> <bootfilename>

If the flash disk is formatted in ext2/ext3:

usb reset
ext2load usb <dev>[:partition] <loadAddress> <bootfilename>

This command reads file bootfilename from device dev, partition partition of the USB flash disk into
the RAM address loadAddress. Device is given as a number starting at zero (0, 1, 2...) and partition
is given as a number starting at 1 (1, 2, 3...). If no partition is specified, partition number 1 is
assumed.

23

8.2.3 From SD/MMC card

If the target has an MMC or HSMMC (High Speed MMC) interface U-Boot can also read from it.
The SD/MMC card must contain a partition formatted in the FAT file system.

Make sure the SD/MMC card is partitioned before formatting.
Windows systems allow formatting of a card without
partitions, but this won’t work in U-Boot.

To read an image from an SD/MMC card’s partition formatted in FAT, enter:

mmc rescan <dev>
fatload mmc <dev>[:partition] <loadAddress> <bootfilename>

This command reads file bootfilename from device dev, partition partition of the MMC card into the
RAM address loadAddress. Device and partition are given as a number (0, 1, 2...).

If no partition is specified, partition 1 is assumed.

For slow SD/MMC cards, a special variable slowmmc has been created. If set
to yes the MMC subsystem will do special delays to be able to communicate
with such cards.

Due to a limitation with FAT implementation in U-Boot, when
using SD/MMC cards it is recommended that the kernel image
is stored in one partition which does not have many files, and
have the root file system in a different partition.

8.2.4 From SATA disk

Some platforms, like the ConnectCore for i.MX53, support SATA drives also. To boot from a SATA
disk it must first be formatted either in FAT, ext2, or ext3 file system.

To read an image from a SATA disk formatted in FAT, enter:

sata init
fatload sata <dev>[:partition] <loadAddress> <bootfilename>

If the disk is formatted in ext2/ext3:

sata init
ext2load sata <dev>[:partition] <loadAddress> <bootfilename>

This command reads file bootfilename from device dev, partition partition of the SATA disk into the
RAM address loadAddress. Device is given as a number starting at zero (0, 1, 2...) and partition is
given as a number starting at 1 (1, 2, 3...). If no partition is specified, partition number 1 is
assumed.

24

8.2.5 From flash

For standalone booting, the device can read the image from flash, avoiding dependency on any
external hardware.

In targets with NOR flash memories, do this with memory commands:

cp.[b/w/l] <sourceAddress> <loadAddress> <count>

This command copies count bytes, words, or long words (depending on the suffix used -: b, w, l -
from sourceAddress into loadAddress.

In targets with NAND flash memories, the special NAND commands must be used:

nand read <loadAddress> <sourceAddress> <count>

This command copies count bytes from sourceAddress into loadAddress.

8.3 Booting images in RAM
After the image is transferred to RAM, you can boot it in either of two ways, depending on the OS:

 For Windows CE images:

go <loadAddress>

 For Linux images:

bootm <loadAddress>

where loadAddress (in both cases) is the address in RAM at which the image resides.

Windows CE images must be compiled with the information
about the address in RAM from which they will be booted. For
example, if a WinCE kernel is compiled with a boot address of
0x2C0000, it can be transferred to a different address, but the
system can boot only from the compiled-in address.

25

8.4 Direct booting
To simplify the boot process, Digi's U-Boot version includes the dboot built-in command, which
reads the OS image from the media and runs it from RAM in a single step.

The syntax for the dboot command is:

help dboot
dboot - Digi modules boot commands

Usage:
dboot <os> [source] [extra-args...]
 Description: Boots <os> via <source>
 Arguments:
 - os: a partition name or one of the reserved names:
 linux|android|wce|netos|eboot
 - [source]: tftp (default)|flash|nfs|usb|mmc|hsmmc|sata|ram
 - [extra-args]: extra arguments depending on 'source'

 source=tftp|nfs -> [filename]
 - filename: file to transfer (required if using a partition name)

 source=usb|mmc|hsmmc|sata -> [device:part filesystem] [filename]
 [rootfspart]
 - device:part: number of device and partition
 - filesystem: fat|vfat|ext2|ext3
 - filename: file to transfer

- rootfspart: root parameter to pass to the kernel command line.
 If omitted uses the one at variable usb_rpart|
 mmc_rpart|sata_rpart.

 source=ram -> [image_address] [initrd_address] [initrd_max_size]
 - image_address: address of image in RAM (default: linuxloadaddr,
 netosloadaddr, etc)
 - initrd_address: address of initrd image (default: loadaddr_initrd)
 - initrd_max_size: max. allowed ramdisk size (in kB) to pass to
 the kernel (default: kernel default)

If <os> is 'wce' the following bootargs are possible:
 cleanhive

where

 OS is either linux, android, wce, eboot, netos or any partition name that holds an OS.

 source is either flash, tftp, nfs, usb, mmc, hsmmc, or sata.

 dev[:partition] is the device index (only for USB, MMC media and SATA) starting at 0 and the
partition number (starting at 1) where the image to boot resides. If not provided, device 0 and
partition 1 are assumed.

 filesystem is either fat, vfat, ext2, or ext3 (only for USB, MMC media and SATA) and must
match the file system of the partition that holds the image to boot. If not provided, FAT is
assumed.

 filename is the name of the kernel image file to download and boot. If not provided, the
filename is taken from ‘kimg’ variable for Linux, 'aimg' for Android, or ‘wimg’ for Windows CE.

 rootfs_partition can be:

o The name of the partition to use as root file system if booting from Flash.

o The name of the device to mount as root file system if booting from USB, MMC,
HSMMC, or SATA.

26

 Other available options are (only for WindowsCE kernels):

o cleanhive: Cleans the WindowsCE registry on boot.

If booting from a network media (tftp, nfs) and the dhcp variable is set to yes or
on, the command first gets an IP address from a DHCP.

For slow SD/MMC cards, a special variable slowmmc has been created. If set
to yes the MMC subsystem will do special delays to be able to communicate
with such cards.

USB media is not supported in ConnectCore Wi-i.MX53 and ConnectCore
i.MX53 platforms.

Due to a limitation with FAT implementation in U-Boot, when
using SD/MMC cards it is recommended that the kernel image
is stored in one partition which does not have many files, and
the root file system in a different partition.

To boot from NFS it is required that the target IP is added to
the /etc/hosts file in the computer serving the NFS.

8.4.1 Boot examples

Boot default Windows CE image stored in Flash:

dboot wce flash

Boot Windows CE image for ConnectCore Wi-MX51 from TFTP cleaning the registry:

dboot wce tftp wce-CCXMX51 cleanhive

Boot default Linux image stored in an SD card with partition 3 formatted in FAT, plugged into the
MMC host device 0:

dboot linux mmc 0:3 fat

Boot Linux image stored in Flash and use partition with name "MyRootFS" for mounting the root file
system:

dboot linux flash MyRootFS

27

Refer to your OS user manual for further instructions on booting your kernel
image.

8.5 Automatic booting
If U-Boot is not interrupted after the delay established in bootdelay, the automatic boot process
takes place. Automatic booting consists of running what is specified in the bootcmd environment
variable.

In other words, automatic booting has the same effect as doing either of the next two examples:

run bootcmd

boot

If, for example, you want to automatically boot a WinCE image from TFTP server, set bootcmd as
follows:

setenv bootcmd dboot wce tftp

Or, if you want to automatically boot a Linux image from flash, set bootcmd as follows:

setenv bootcmd dboot linux flash

If bootdelay is set to 0, the autoboot happens immediately
after U-Boot starts. To stop the process and enter the monitor,
press a key as soon as the first U-Boot output lines appear.

28

9. Using NVRAM

An embedded OS requires some persistent settings; for example, MAC address, IP address, Internet
gateway, flash partition table, and U-Boot environment variables. You change some of these only in
production and others only during custom setup.

These settings must be stored in non-volatile memory (NVRAM) so they are not lost when you power the
target off.

A partition called NVRAM on the flash memory is used to store these settings. The contents are protected
by a CRC32 checksum and they are also mirrored to a different location in the partition. This way, if
anything goes wrong reading this data or data becomes corrupted, the information can be restored from
the mirrored data.

9.1 The 'flpart' command
To print, modify, or restore the partitions table, use the flpart command. This U-Boot command
requires no arguments; you create the partitions table using a menu of options.

9.1.1 A partition table entry

A partition table entry contains these fields:

Field Description
Number Index of partition in the table
Name Name of the partition
Chip Index of flash chip (normally, only one)
Start Physical start address of the partition (in hex)
Size Size of the partition (in hex)
Type Partition type (what it will contain)

• U-Boot
• NVRAM
• FPGA
• Linux/Android-Kernel
• WinCE-EBoot
• WinCE-Kernel
• Net+OS-Kernel
• Net+OS-Loader
• Net+OS-NVRAM
• File system
• WinCE-Registry
• Splash-Screen
• Unknown

FS File system that the partition contains:
• YAFFS
• JFFS2
• UBIFS
• CRAMFS
• SQUASHFS
• INITRD

29

• ROMFS
• ExFAT
• FlashFX
• Unknown

Flags Flags (non-exclusive):
• read-only
• mount read-only
• rootfs

9.1.2 Changing the partition table

To modify the partition table, use the flpart command in U-Boot:

flpart
Commands:
 a) Append partition
 d) Delete partition
 m) Modify partition
 p) Print partition table
 r) Reset partition table
 q) Quit
Cmd (? for help)> p
NrNr | Name | Start | Size | Type | FS | Flags

 0 | U-Boot | 0 | 768 KiB | U-Boot | | fixed
 1 | NVRAM | 768 KiB | 512 KiB | NVRAM | | fixed
 2 | Kernel | 1280 KiB | 24 MiB | WinCE-Kernel | |
 3 | Filesys | 25856 KiB | 498432 KiB | Filesystem | ExFAT |

You can add, modify, or delete partitions step-by-step; a command prompts you for the necessary
information.

Start and Size values can be given as hexadecimal numbers (prefixed with 0x)
or as decimal numbers followed with k (for KiB) or m (for MiB).

The partition table can also be reset to default values. In this case, because the partition table
differs according to the target’s OS, you must select the OS you want.

Changes take effect only after quitting 'flpart' and saving the
changes.
When the size or start address of a partition has been changed,
it is always necessary to erase it and write a new image to it.

30

9.2 The ‘intnvram’ command
Most of the variables stored in NVRAM can be read with the printenv command, modified or
erased with the setenv command, stored with the saveenv command, and reset with the envreset
command. There are, however, protected variables in the NVRAM which are read-only. These are,
for example, the MAC address of the module, the serial number, the boot and NVRAM partitions,
the wireless calibration data, etc.

Protected variables stored in NVRAM can be read, modified, erased, stored, or reset with the
intnvram command.

DO NOT USE THE intnvram COMMAND UNLESS YOU ARE
COMPLETELY SURE OF WHAT YOU ARE DOING. INCORRECT USE
CAN DESTROY SENSITIVE NVRAM DATA FOREVER AND MAKE
THE MODULE UNUSABLE.

Changes made to NVRAM with the intnvram command are kept in RAM. U-Boot writes the
changes to NVRAM only when you execute the saveenv command or intnvram save command.

The syntax of the intnvram command is as follows:

Usage: intnvram help|print <params>|printall|repair|reset|save|set <params>

 help : prints this
 print : prints selected parameters.
 E.g.: print module mac serialnr
 printall : prints complete contents and metainfo
 repair : Repairs the contents. If one image is
 bad, the good one is copied onto it.
 If both are good or bad, nothing happens.
 reset : resets everything to factory default values.
 save : saves the parameters
 set : sets parameters.

For help with this command, enter intnvram help.

To print the complete contents of the NVRAM settings, enter intnvram printall.

You can set or print one parameter or a set of parameters. Parameters are grouped in blocks. The
following is a complete list of parameters with the possible values some of them can take:

 params for "set" or "print" can be
 module [producttype=] [serialnr=] [revision=] [patchlevel=]
 [ethaddr1=] [ethaddr2=] [ethaddr3=] [btaddr1=]
 network [gateway=] [dns1=] [dns2=] [server=] [netconsole=] [ip1=]
 [netmask1=] [dhcp1=] [ip2=] [netmask2=] [dhcp2]
 [ip3=] [netmask3=] [dhcp3=]
 partition [add] [del] [select=] [name=] [chip=] [start=] [size=]
 [type=] [flag_fixed=] [flag_readonly=]
 [flag_fs_mount_readonly=] [flag_fs_root=] [flag_fs_type=]
 [flag_fs_version=]
 os [add] [del] [select=] [type=] [start=] [size=]
 dualboot [avail0=] [avail1=] [verified0=] [verified1=] [boot_part=]
 [last_updated=] [boot_attempts=] [mode_peer=]
 [guarantee_perboot=]

Params trailed with '=' require a value in the set command. In the print
command, '=' mustn't be used.

Possible Values are
 os type: None,Critical,OS-Meta,U-Boot,Linux,EBoot,WinCE,Net+OS,
 Unknown,Application,NET+OS-Loader,User defined,
 Wireless Calibration

31

 partition type: U-Boot,NVRAM,FPGA,Linux-Kernel,WinCE-EBoot,WinCE-Kernel,
 Net+OS-Kernel,Filesystem,WinCE-Registry,Unknown,
 Splash-Screen,NET+OS-Loader,NET+OS-NVRAM
 flag_fs_type: None,JFFS2,CRAMFS,INITRD,FlashFX,Unknown,YAFFS,
 ExFAT,SQUASHFS,ROMFS

Specify the group of the parameter before the parameter itself. For example, to print the module IP
for the first wired Ethernet interface, execute:

intnvram print network ip1
ip1=192.168.42.30

For printing different parameters of a block, the block must be used only once. For example, to print
the module's MAC address and serial number, execute:

intnvram print module ethaddr1 serialnr
ethaddr1=00:40:9D:2E:92:D4
serialnr=0700-94000329A

To set a parameter a valid value must be provided, as shown here:

intnvram set module serialnr=REVA-6_001

To access a partition parameter, address the specific partition with the parameter select=n, where
n is the index to the partition. This example prints the names of partitions 1 and 2:

intnvram print partition select=0 name select=1 name
name=U-Boot
name=NVRAM

The ‘reset’ command will completely erase the MAC addresses
and the wireless calibration data of your module. Do not use
the ‘reset’ command unless you have a backup file with the
wireless calibration data for future restoration.

9.2.1 Mappings of variables

Some of the protected variables in NVRAM are mapped to U-Boot environment variables.
Therefore, modifying them with the intnvram command is the same as doing so with the setenv
command. For security reasons, however, some variables cannot be modified with the
setenv command. The following table lists the mapped variables:

U-Boot variable NVRAM parameter Blocked for 'setenv'
ethaddr ethaddr1 X
wlanaddr ethaddr2 X
eth1addr ethaddr3 X
btaddr btaddr1 X
netmask netmask1
netmask_wlan netmask2

32

netmask1 netmask3
ipaddr ip1
ipaddr_wlan ip2
ipaddr1 ip3
dhcp dhcp1
dhcp_wlan dhcp2
dhcp1 dhcp3
dnsip dns1
dnsip2 dns2
serverip server
gatewayip gateway

33

10. Firmware update commands

10.1 Overview
The boot loader, kernel, and other data stored in flash form the firmware of the device. Because
U-Boot can write any part of flash, its flash commands can be used to reprogram (update) any part
of the firmware. This includes the boot loader itself.

The update process normally takes place in three steps:

1. Reading image from media (Ethernet, USB, MMC, SATA) into RAM memory
2. Erasing the flash that is to be updated
3. Copying the image from RAM into flash

10.2 Updating flash with images in RAM
Flash memory must be updated with images located in RAM memory. You can move images to
RAM using either Ethernet, USB, or MMC (see section 8.2 for more information).

To erase flash and copy the images from RAM to flash, use these commands:

 For NOR flash memory:

erase address +size
cp.[b|w|l] sourceAddress targetAddress count

The first command erases size bytes beginning at address. The second command copies count
bytes, words or long words (depending on the suffix used: b, w, l) from sourceAddress into
targetAddress.

 For NAND flash memory:

nand erase address size
nand write sourceAddress targetAddress count

The first command erases size bytes beginning at address. The second command copies count
bytes from sourceAddress into targetAddress.

The erasure of the flash comprises whole erase-blocks.
The address and size parameters must be multiples of the
erase-blocks of the flash memory. See your module's flash
datasheet for the erase-block size.

34

10.3 Direct updating
Digi's U-Boot version includes the built-in update command. This command copies the image from
the media to RAM, erases the flash size needed for the image, and moves the image from RAM
into flash in a single step, simplifying the update process.

The following is the syntax for update:

help update
update - Digi modules update commands

Usage:
update <partition> [source] [extra-args...]
 Description: updates flash <partition> via <source>
 Arguments:
 - partition: a partition name or one of the reserved names:
 uboot|linux|android|rootfs|userfs|androidfs|eboot|wce|
 wcez|netos|netos_loader|splash
 - [source]: tftp (default)|nfs|usb|mmc|hsmmc|sata|ram
 - [extra-args]: extra arguments depending on 'source'

 source=tftp|nfs -> [filename]
 - filename: file to transfer (required if using a partition name)

 source=usb|mmc|hsmmc|sata -> [device:part filesystem] [filename]
 - device:part: number of device and partition
 - filesystem: fat|vfat|ext2|ext3
 - filename: file to transfer

 source=ram -> <image_address> <image_size>
 - image_address: address of image in RAM
 - image_size: size of image in RAM

 source is the place to take the image from. If not provided, tftp is assumed.

 dev[:partition] is the device index (only for USB, MMC, SATA media) starting at 0, and the
partition number (starting at 1) where the image to update resides. If not provided, device 0 and
partition 1 are assumed.

 filesystem is either fat, ext2, or ext3 (only for USB, MMC, SATA media). If not provided, FAT is
assumed.

 file is the name of the image to download and update. If not provided, the filename is taken
from one of the following U-Boot environment variables (depending on the partition to be
updated):

o kimg: for the Linux kernel image

o aimg: for the Android kernel image

o wimg: for the Windows CE kernel image

o nimg: for the NET+OS kernel image

o uimg: for the boot loader image

o usrimg: for the user image

o rimg: for the Linux root file system image

o arimg: for the Android root file system image

o simg: for the Splash screen image

o fimg: for the FPGA image

35

If updating from a network media (tftp, nfs) and the dhcp variable is set to yes
or on, the command first gets an IP address from a DHCP server.

To boot from NFS it is needed so that the target IP is added to
the /etc/hosts file in the computer serving the NFS.

For example, to update the Splash screen partition using a file called ‘mylogo.bmp’ that resides on
the second partition (formatted in FAT) of an SD card which is plugged in the first MMC device
(index 0), the update command would be:

update splash mmc 0:2 fat mylogo.bmp

To update the boot loader from the TFTP exposed folder with the default name image stored in
variable uimg, the update command would be:

update uboot

10.3.1 Update limits

The update command in U-Boot transfers files to RAM, erases the flash partition, and writes the
files from RAM into flash memory.

The file that is transferred is copied to a specific physical address in RAM; therefore, the maximum
length of the file to update is:

Update file size limit = Total RAM memory – RAM offset where the file was loaded

As a general rule, U-Boot does not let you update a flash partition with a file whose size exceeds
the available RAM memory. This means that, for example, if you have a module with 32MB RAM
and 64MB flash and you want to update a partition with a file that is 35MB, U-Boot will not do it.

Note that this limitation is due to the RAM memory size, as U-Boot first needs to transfer the file to
RAM before copying it to flash.

For information on updating partitions with files larger than the available RAM
memory, see your OS-specific update flash tool.

To overcome this problem a special TFTP on-the-fly update mechanism has been created and is
used only when updating from TFTP media.

36

10.3.2 TFTP on-the-fly update mechanism

This update mechanism solves the RAM limitation problem with firmware updates. It first erases the
target flash partition and then transfers a chunk of the image file via TFTP. It writes the chunk into
the flash memory, verifies it and then continues to transfer the next chunk.

The on-the-fly mechanism is disabled by default and can be enabled by setting the environment
variable otf-update to yes.

setenv otf-update yes
saveenv

This mechanism is only recommended to write large image files (bigger than 32MB or than half the
available RAM).

On-the-fly update mechanism is automatically disabled when
updating U-Boot partition (to prevent partial update due to a
network cut).

To manually disable the mechanism, simply set the variable to no:

setenv otf-update no
saveenv

37

11. Customize U-Boot

11.1 Overview
U-Boot has several functionalities which can only be enabled before compiling U-Boot. To
configure U-Boot options and customize the boot loader, refer to your OS specific user manual.

Description of some available configurations are as follows:

11.2 Silent Console
The target does not display any output when the console is set to silent mode. This option is
disabled by default. To enable it, you must configure U-Boot using your OS configuration tool and
rebuild it.

When silent console is enabled messages will be printed depending on the value of the
environment variable 'silent' (yes|no).

Before using a boot loader with silent console, you should first define a way to recover from it.
Otherwise, you will not be able to disable it in the future.

The first recovery possibility is using the keyX environment variables (see section 5.4.4) to set the
'silent' variable to 'no':

setenv key1 setenv silent no\;saveenv
saveenv

In this case, the sequence to recover from silent mode would be the following:

1. Keep Key1 pressed while the target is booting

2. After a short time (about 4 seconds) press the reset button

3. The target now boots with output on the console

The second possibility to recover from silent mode is using a GPIO or a user button on the
JumpStart board. This method can also be enabled in the configuration tool.

If a recover method is not defined you won't be able to access
U-Boot prompt and you will need to recover it.
Please refer to Chapter 14 Recovering a device for more
information.

The console can be switched to silent mode after reboot by typing:

setenv silent yes
saveenv

After reboot, you can recover from silent mode by pressing the user key (or setting the GPIO to the
defined level) shortly after the target starts to boot.

38

11.3 Video interface

11.3.1 Initialize video interface

To initialize the video interface in U-Boot, the variable 'video' must be set to a value like this:

setenv video displayfb:<DISPLAYTYPE>[@[<DISPLAYNAME>][<RESOLUTION>]]
saveenv

where

• <DISPLAYTYPE> is the type of display: VGA, HDMI, LCD

• <DISPLAYNAME> is the name of the connected display (only for LCD displays)

• <RESOLUTION> is the display resolution (not needed for LCD displays, as those have
fixed resolution).

If the hardware is capable of a second display variable 'video2' must be set with the video settings
of the second display. Some platforms support LVDS video bus through a bridge, which needs to
be configured by means of the environment variable 'ldb'.

To simplify things, the command 'video' allows you to interactively set the 'video', 'video2' and 'ldb'
variables. A menu will present the available displays and resolutions (where applicable):

video
Video interface
 1) Video 1
 2) Video 2
 3) LVDS bridge
 4) Primary display
 5) Cancel
Select interface: 1

Displays/video mode
 1) Disabled
 2) VGA
 3) HDMI
 4) LCD display
 5) Cancel
Select displays/video mode: 4

Type of LCD
 1) Parallel
 2) LVDS
 3) Cancel
Select LCD type: 1

LCD display
 1) LQ070Y3DG3B (800x480 JumpStart Kit display)
 2) LQ064V3DG01 (640x480)
 3) LQ121K1LG11 (1280x800)
 4) LQ106K1LA05 (1280x768)
 5) LQ104V1DG62 (640x480)
 6) custom1 configuration
 7) custom2 configuration
 8) custom1 configuration in NVRAM
 9) custom2 configuration in NVRAM
 a) Cancel
Select LCD display: 1

Setting variable:
 video=displayfb:LCD@LQ070Y3DG3B
Remember to save the configuration with 'saveenv'

saveenv

39

Remember to save the changes with saveenv after configuring the display with the
video command.

Refer to your CPU hardware reference manual for details about the configuration of
the LVDS Bridge, if you want to select this display option.

11.3.2 Custom LCD displays

Apart from the built-in displays and resolutions, a user can select two custom configuration options
(custom1 or custom2) to instruct the OS to boot with a custom video configuration. For LCDs, it
means to use a custom LCD display. For video modes (VGA/HDMI) it means to configure other
settings like resolution, refresh frequency, etc.

Refer to your OS documentation for instructions on configuring a custom display in source code

For LCD displays, there are two additional options: the custom3/custom4 configuration in
NVRAM. While the previous custom1 and custom2 configurations were hard-coded (which means,
the LCD settings are established in source code and compiled with the kernel), the custom3_nv
and custom4_nv settings are stored in the NVRAM, so you can modify these at runtime.

.

To select and change the custom3_nv or custom4_nv LCD settings, run the 'video' command,
select the LCD interface then the 'custom3 or custom4 configuration in NVRAM' option. Now,
U-Boot will ask for the LCD configuration parameters:

LCD display
 1) LQ070Y3DG3B (800x480 JumpStart Kit display)
 2) LQ064V3DG01 (640x480)
 3) LQ121K1LG11 (1280x800)
 4) LQ106K1LA05 (1280x768)
 5) LQ104V1DG62 (640x480)
 6) custom1 configuration
 7) custom2 configuration
 8) custom3 configuration in NVRAM
 9) custom4 configuration in NVRAM
 a) Cancel
Select LCD display: 8
 Refresh rate (60): 60
 X-resolution (800): 800
 Y-resolution (480): 480
 Pixel clock (44000): 44000
 Left margin (0): 0
 Right margin (50): 50
 Upper margin (25): 25
 Lower margin (10): 10
 H-sync (128): 128
 V-sync (10): 10
 Sync (? for help) (4): 4
 V-Mode (? for help) (0): 0
 Flags (0): 0
 Backlight function enabled (0): 0

Windows CE specific settings:
 Pixel Data Offset [0]:
 Pixel Clock Up [0]:
 Pixel Clock Down [0]:

Setting variable:
 video=displayfb:LCD@custom3_nv
Remember to save the configuration with 'saveenv'

saveenv

40

The values of the previous example are the display settings of the LQ070Y3DG3B.

For 'Sync' and 'V-Mode' parameters, you can type a ‘?’ to get help about the valid
input values.

11.3.3 Selecting the primary video interface

In platforms that support two video interfaces, you may use the variable fbprimary to determine
which video interface will be the primary interface.

Use the video command to set this variable from its menu:

video

Video interface
 1) Video 1
 2) Video 2
 3) LVDS bridge
 4) Primary display
 5) Cancel
Select interface: 4

Primary display
 1) Video 1
 2) Video 2
 3) Cancel
Select primary display: 1

video=displayfb:LCD@custom3_nv
video2=displayfb:disabled
fbprimary=video
saveenv

The variable fbprimary can take the values:

• video, in which case display1 will be primary and display2 will be secondary.

• video2, in which case display1 will be secondary and display2 will be primary.

By default, the fbprimary variable is not set and display1 is considered the primary.

41

11.4 Splash screen support
The U-Boot splash screen support allows the user to display a picture at boot time on an LCD or
monitor that is connected to the target. The picture is read from a partition in the flash.

The usage of splash screen support in U-Boot is discouraged
and will be deprecated in the future.
Instead, it is recommended to use whatever mechanism the
Operating System has, to display a splash image on the frame
buffer soon during the system boot process.

In particular, the ConnectCard for i.MX28 platform doesn’t
support splash screen in U-Boot.

11.4.1 Creating a splash partition

Use the command flpart and option p to print the partition table and check if there is already a
splash partition in your flash. If there isn't you will need to create one to hold the splash screen
image (you may need to reduce some existing partition):

flpart
Nr | Name | Start | Size | Type | FS | Flags

 0 | U-Boot | 0 |768 KiB |U-Boot | | fixed
 1 | NVRAM | 768 KiB |512 KiB |NVRAM | | fixed
 2 | Kernel | 1280 KiB | 3 MiB |Linux-Kernel | |
 3 | RootFS-JFFS2 | 4352 KiB | 16 MiB |Filesystem | JFFS2 | rootfs
 4 | User-JFFS2 |20736 KiB | 11 MiB | Filesystem | JFFS2 |
Commands:
 a) Append partition
 d) Delete partition
 m) Modify partition
 p) Print partition table
 r) Reset partition table
 q) Quit
Cmd (? for help)> a
Last partition 4 had already maximum size.
 Size (in MiB, 0 for auto, 11 MiB max) (11 MiB): 10 MiB
Adding partition # 5
 Name (): Splash
 Chip (0): 0
 Start (in MiB, 0 for auto) (0): 0
 --> Set to 31 MiB
 Size (in MiB, 0 for auto, 1 MiB max) (0): 1MiB
 Partition Types
Partition Type (U-Boot, ? for help)> s
 Fixed (n): n
 Readonly (n): n
Partition 5 added
Cmd (? for help)> p
Nr | Name | Start | Size | Type | FS | Flags

 0 | U-Boot | 0 |768 KiB |U-Boot | | fixed
 1 | NVRAM | 768 KiB |512 KiB |NVRAM | | fixed
 2 | Kernel | 1280 KiB | 3 MiB |Linux-Kernel | |
 3 | RootFS-JFFS2 | 4352 KiB | 16 MiB |Filesystem | JFFS2 | rootfs
 4 | User-JFFS2 |20736 KiB | 10 MiB |Filesystem | JFFS2 |

42

 5 | Splash | 31 MiB | 1 MiB |Splash-Screen | |
Cmd (? for help)>q
Partition table has been modified. Save? (y): y
Writing Parameters to NVRAM

11.4.2 Uploading a splash image

After the partition is created the splash image has to be written to it.Only 8-bit BMP images can be
used. Images must match the display resolution.

Uploading is done with the following command (in the example, the bitmap file digi.bmp is used):

update Splash tftp digi.bmp
TFTP from server 192.168.42.1; our IP address is 192.168.42.30
Filename 'digi.bmp'.
Load address: 0x200000
Loading: ######
done
Bytes transferred = 77878 (13036 hex)
Calculated checksum = 0x2a13f7f
Erasing: complete
Writing: complete
Verifying: complete
Update successful

where Splash is how we named the partition. Or, if the variable simg contains the BMP filename,
you can simply execute:

update splash

and the keyword splash will auto-select the first partition of type Splash-Screen.

A splash image takes about 75 KiB for QVGA resolution, and 300 KiB for VGA
resolution.

If the splash image does not match the resolution of the
display or it is not 8-bit pallet bitmap, U-Boot will print an
error message and will not show the splash screen.

11.4.3 Initialize video interface

To initialize the video interface in U-Boot, the following variable must be set:

setenv videoinit yes
saveenv

Additionally, the variable video must be initialized with the selected display, as described in section
11.3. Video interface.

The frame buffer is, by default, located at the end of U-boot in RAM. The location can be changed
by setting:

43

setenv fb_base <address>

The default is also used if the passed address for the frame buffer is inside of a protected area (for
example, if the address points to the U-boot code).

11.5 Dual boot mechanism

11.5.1 Overview

Dual boot is a mechanism that allows you to store an alternate system that will be booted if the
current system turns invalid or unbootable for whatever reason within Flash.

The dual boot mechanism should not be confused with the ability to boot
multiple different operating systems which is explained in chapter 12. Boot
different operating systems.

When the mechanism detects that a system partition is not booting correctly it switches
automatically to boot the alternate one.

IMPORTANT NOTES

• The dual boot mechanism is not enabled by default. Refer to your OS documentation for
information about configuring U-Boot for enabling dual boot.

• The dual boot mechanism is devised to work when booting from flash memory only.

• Enabling dual boot requires you to modify your flash partition table, maintain two systems,
program actions from user space and usually properly handle your watchdog timer from
your OS.

11.5.2 Enabling Dual boot mechanism

Run your OS configuration tool and enable the dual boot mechanism on the U-Boot configuration
section. You can select other options like the dual boot mode and the usage of the watchdog
(explained in detail further in this chapter). Save the settings, rebuild U-Boot, and update the U-
Boot firmware into your platform.

44

11.5.3 Dual boot modes

Dual boot can work in two modes (selectable at build time):

• Peer

• Rescue

11.5.3.1 Peer mode

Dual boot peer mode requires you to have duplicated identical system partitions that will be used to
store two exact copies of the system.

The term system partition means as many partitions as needed to have a bootable OS, for
example:

• For Linux or Android the system is formed by two partitions: Kernel and RootFS. This
means we need to duplicate these two partitions in order to have two systems:
Kernel0+RootFS0 and Kernel1+Rootfs1 (four partitions in total).

• For WindowsCE the system is only formed by one partition: Kernel. This means that we
need to duplicated this partition to have two systems: Kernel0 and Kernel1 (two partitions
in total).

Once you have flashed and booted a U-Boot with dual boot support

11.5.3.2 Rescue mode

 you can run
the flpart command and reset your flash partition table to your OS defaults.
Doing this will automatically create the necessary duplicate system partitions.

The reason for utilizing dual boot rescue mode is to have an secondary rescue system partition
that holds a well-verified bootable system that can serve for restoring the main system if it becomes
defective.

Note that the rescue system does not necessarily need to have the complete functionality designed
for the device. Instead, it has to have the necessary tools to allow for main system recovery.

As in peer mode, we need to have additional partition(s) to hold a secondary system, but these
secondary partition(s) don't need to be identical.

Identical partitions (same size and type)

45

Once you have flashed and booted a U-Boot with dual boot support

 you can run
the flpart command and reset your flash partition table to your OS defaults.
Doing this will automatically create the necessary duplicate system partitions.

11.5.4 Detecting a corrupt system

A system may become unstable for different reasons. The dual boot mechanism must automatically
detect such a case and instead boot the alternate system. This is achieved by using a watchdog
timer and allowing users to decide when they consider a system as being fully booted.

11.5.4.1 Marking a system as valid

The dual boot mechanism maintains a counter called boot_attempts with the number of attempts a
system has been tried to boot. Every time the system boots, this counter increments automatically.
If it reaches the established maximum number of attempts without the system having been marked
as valid, the dual boot mechanism will mark that system as unavailable and will switch to boot the
alternate system in the flash.

Marking a system as valid is the responsibility of the user. It is up to the user to decide under which
conditions a system is considered valid. The simplest way to do this is by marking the system as
valid right after the system starts (for example, in a script that runs after boot). However, the user
may decide to delay this to the point where a certain application has launched and started different
services.

Depending on the selected dual boot guarantee mode, the way to mark a system as valid varies:

Guarantee mode Description How to mark the system as valid

Per boot The system must be verified to be
working (valid) on every single boot.

The boot_attempts counter works as a kind of
watchdog timer, and the way to mark the system
as valid is to reset the boot_attempts counter.

After update The system must be verified to be
working (valid) only after it has been
updated with new firmware. Once
marked valid, the boot_attempts
counter is no longer incremented and
the dual boot mechanism will assume
the system will always boot correcly.

In this mode, a 'verified' flag for each system is
stored in the NVRAM partition. The way to mark
the system as valid is to set the system's verified
flag in the NVRAM

Not necessarily identical partitions

46

If a system is not able to reach this point (defined by the user) for example, because the kernel
hangs during the boot process, the boot_attempts counter will not be reset (or the verified flag will
not be set), meaning an unsuccessful boot attempt occurred.

The way to mark a system as valid is hardware and OS dependent. Please refer to your OS
documentation for information about how to mark a system as valid in your system.

11.5.4.2 Maximum boot attempts and switch to alternate system

The dual boot mechanism will try to boot a system a configurable number of times (three attempts
by default). If the boot_attempts counter has not been reset by the OS in any of these attempts and
it reaches the maximum number of attempts, on the next boot cycle U-Boot will switch and try the
alternate system instead.

11.5.5 Start up guarantee modes

The dual boot mechanism can be configured to guarantee a valid system in two ways:

• Per boot

• After update

11.5.5.1 Per boot start up guarantee mode

When per boot start up guarantee is selected, the boot_attempts counter is incremented on every
attempt to boot the system. This model is important because it guarantees that the device boots
every time to a state where the system is usable (as defined by the user).

This is the recommended mode if the platform has persistent RAM of any kind available to store the
boot_attempts counter.

11.5.5.2 After update start up guarantee mode

When after update start up guarantee is selected, the boot_attempts counter is incremented on
every attempt to boot the system until the system has been marked as valid. A verified flag must be
set to mark a system as valid in this mode. Once this mark has been made, the system is assumed
to always be valid and the dual boot mechanism is not used again until the system partition is
updated with new firmware, in which case the verified flag is automatically reset.

This model only guarantees that a system boots the first time after new firmware has been put into
the flash.

This is the recommended mode if NVRAM needs to be used for persistent data storage, to prevent
wear of the flash (in per boot mode the boot_attempts counter must be changed on every boot).

11.5.6 Watchdog to reset a corrupt system

By default U-Boot won't enable the watchdog timer. This means that you will have to manually
reset your device in case of a failed boot attempt.

Enabling the watchdog for the dual boot mechanism is a configurable option. If you enable it,
U-Boot will program the watchdog timer of your platform with the value specified in variable
dualb_wdt_timeout (in seconds) and will start it right before booting the OS.

IMPORTANT NOTES:

• The target will reset in the time specified in the U-Boot variable dualb_wdt_timeout,
unless the OS takes control of the watchdog timer (either disabling it, or periodically kicking
it before it expires).

47

• Make sure you set the U-Boot variable dualb_wdt_timeout to a time big enough for your
system to safely reach the point where you are marking the system as valid (reset of the
boot_attempts counter or setting of verified flag) and taking control of the watchdog.

• Enabling the watchdog is the only way the device can automatically reset and switch to
boot the alternate system after the specified number of attempts. Otherwise, a manual
reset is required.

11.5.7 Update process in U-Boot

When using the update command in U-Boot with the partition key reserved names (linux, wce,
rootfs) the following behavior will apply:

11.5.7.1 Update on peer mode

U-Boot will boot the partition that was updated most recently (the current partition). Updates will
take place over the alternate partition so that if an update process crashes, the current system is
not affected. The partition to update will be automatically selected by U-Boot.

If the update process completes correctly, the updated partition will become the current partition for
the next boot attempt.

11.5.7.2 Update on rescue mode

In rescue mode there is only one main system partition and updates take place over this partition.

When specifying the exact name of the partition (as opposed to the abbreviated
key name) that particular partition will be updated.

11.5.8 Additional notes on dual boot

• The user can specify the maximum number of boot attempts to try before toggling to boot
the alternate system by means of the environment variable dualb_retries. Notice that in
some platforms, the implementation of the boot_attempts may already fix a limit (for
example in ConnectCard for i.MX28 two bits are used for the counter, fixing the limit on 3
attempts).

• When a system has failed to boot the number of times specified in dualb_retries this system
is marked as invalid, so that it is never tried again (until a new firmware is written).

• Before booting the OS, U-Boot prints a message to the console with the attempt number
and the maximum number of retries. If U-Boot toggles to the alternate system a message is
also printed.

• A configuration option allows the user to choose what to do when the alternate system also
does not succeed in fully booting. The default action would be to retry this system forever
but you can instead call a no_system_panic function that simply prints a message to the
console or other hardware specific action (like blinking a LED, for example).

48

12. Boot different operating systems

U-Boot allows for several different customizations, one of which is the possibility to boot multiple
different operating systems. This can serve for demo or operating purposes.

12.1 Media requirements
In order to boot different operating systems, the OS images must be in the appropriate media.

Example 1: if you wish to have Linux on the Flash and WindowsCE on an MMC card, you must
make sure that the Flash is partitioned to have a Kernel and RootFS partition and that the MMC
card is formatted in FAT:

Example 2: if you wish to have three different Linux systems on the flash you will need to create a
partition table in flash that contains three kernel partitions, plus three rootfs partitions:

49

Example 3: if you wish to have two different Linux systems on the flash with the same kernel but
different root file systems, plus a WindowsCE system, you will need to create a partition table that
contains one kernel partition, two root file system partitions and one WindowsCE partition.

For instructions on how to partition the flash memory see 9.1.2. Changing the partition table.

Once the various media options are prepared you will need to transfer the different firmware
images to the respective media (see Chapter 10 Firmware update commands for more
information).

12.2 Booting the different operating systems

12.2.1 Boot commands

To manually boot each system, you can use the dboot command with appropriate parameters.

For example1 (described in the previous section):

- dboot linux flash would boot the Linux system on the flash

- dboot wce mmc would boot the WindowsCE system on the SD card

For example2 (described in the previous section):

- dboot LinuxKernel1 flash RootFS1 would boot the first Linux system on the flash

- dboot LinuxKernel2 flash RootFS2 would boot the first Linux system on the flash

- dboot LinuxKernel3 flash RootFS3 would boot the first Linux system on the flash

For example3 (described in the previous section):

- dboot linux flash RootFS1 would boot the Linux system on the flash using RootFS1 as
root file system partition

- dboot linux flash RootFS2 would boot the Linux system on the flash using RootFS2 as
root file system partition

- dboot wce flash would boot the WindowsCE system on the flash

50

For more information on the dboot command see 8.4. Direct booting or run help
dboot.

12.2.2 Choosing the operating system to boot

By default, U-Boot will run the command stored at the variable bootcmd. You must set this variable
to the boot command that boots your desired default system.

To boot a different system than the default one you have the following options:

- Manual boot: stops the autoboot process and manually rusn the boot command to boot a
different system.

- User keys: as described in 5.4.4. User keys, you can program variables key1, key2, and
key12 to run different commands when those keys are pressed (only on JumpStart
development boards that have such user keys).

51

13. U-Boot development

U-Boot is an open source project. Sources are freely distributed, and you can modify them to meet
your requirements for a boot loader.

The project sources are ready to be installed and compiled in a Linux environment.

For information about installing the U-Boot sources, modifying platform-specific sources, and
recompiling the boot loader, see your development kit documentation. Procedures may vary
according to hardware platform and OS.

52

14. Recovering a device

There may be occasions where a custom boot loader is built and then updated into flash. If this
custom boot loader is not able to boot, or if the boot loader is accidentally erased from the Flash,
there are still methods to recover your platform.

14.1 Using Digi J-Link
The Digi J-Link Debugger is a hardware debugger that can be used to load a boot loader to your
target’s RAM.

Please refer to your OS documentation for additional help to recover a device via JTAG.

14.2 Loading a boot loader via USB
ConnectCard for i.MX28 platforms are able to load a boot loader image using a USB cable and a
special program called sb_loader.

The cable must be a USB A type connector to Micro-USB B connector.

Connect the USB A type to a USB host port of your computer and the Micro-USB B connector to
the development board. Notice that the USB provides 5V power to the board and module.

53

The sb_loader program is located at the toolchain path, typically at:

/usr/local/DigiEL-X.Y/x-tools/arm-unknown-linux-gnueabi/bin/

You need to run this application passing as argument the boot loader image you want to load.
Notice that in order to have access to the USB port, you may be required to run the program as
root:

$ sudo /usr/local/DigiEL-X.Y/x-tools/arm-unknown-linux-
gnueabi/bin/sb_loader u-boot-ccardwmx28js-ivt.sb
Waiting for USB device attach...

At this point, you must force the CPU to boot in USB recovery mode:

• In development board V1 (PCB S/N 30013792-01) maintain pressed the USB0 BOOT
button on the development board and reset the target.

• In development board V2 (PCB S/N 30013792-02) set the boot mode jumpers to USB
mode (refer to the development board Hardware Reference or schematics) and then reset
the target.

The boot loader image should be loaded from USB to the RAM and executed. Once in the U-Boot
prompt you can update the flash with a valid boot loader image.

14.3 Loading a boot loader from SD/MMC card
Digi platforms may be able to boot a boot loader from an SD/MMC or microSD. This is specially
useful to recover targets whose boot loader in the Flash memory has been corrupted.

To make an SD/MMC card bootable we need to raw write the boot loader image to the card sectors
at the position (or with the needed metadata) that the CPU expects. The following topics explain
how to prepare a bootable card in a Linux or Windows host PC. The method is different depending
on the target platform.

14.3.1 ConnectCore for i.MX51 and ConnectCore for i.MX53 platforms

14.3.1.1 Preparing the SD/MMC card (on a Linux host PC)

Insert the SD/MMC card (or microSD card) into your host PC card reader socket and check the
identifier assigned by Linux to the card. You can usually check this by running the dmesg
command and checking the last lines, right after inserting the card:

$ dmesg
[117953.837337] sdg: detected capacity change from 7969177600 to 0
[118258.629614] sd 10:0:0:0: [sdg] 15564800 512-byte logical blocks: (7.96
GB/7.42 GiB)
[118258.631335] sd 10:0:0:0: [sdg] No Caching mode page present
[118258.631340] sd 10:0:0:0: [sdg] Assuming drive cache: write through
[118258.633952] sd 10:0:0:0: [sdg] No Caching mode page present
[118258.633957] sd 10:0:0:0: [sdg] Assuming drive cache: write through
[118258.636662] sdg: unknown partition table

In the example above the card was identified as sdg.

Do not mount the SD/MMC card. If your system automatically
mounted it, umount all partitions before continuing.
Also notice that after the process, existing partitions might
become unusuable.

Locate the U-Boot image file (for example /tmp/u-boot-ccwmx53js.bin) and run the following
commands to raw write it to the SD/MMC card (you may need root privileges):

54

$ sudo dd if=/tmp/u-boot-ccwmx53js.bin of=/dev/sdg bs=512 seek=2 skip=2
781+1 records in
781+1 records out
400196 bytes (400 kB) copied, 0.451786 s, 886 kB/s
$ sync

where /tmp/u-boot-ccwmx53js.bin must be substituted with the path to your U-Boot image and
/dev/sdg must be substituted with the device assigned by Linux to your SD/MMC card.

The command sync simply makes sure all the data is effectively transferred to the card.

After this, you can remove the card and proceed to chapter 14.3.3. Preparing the hardware
platform for further instructions.

14.3.1.2 Preparing the SD/MMC card (on a Windows host PC)

Download Windows version of dd program from http://www.chrysocome.net/dd. Install the dd.exe
executable in C:\Windows, so that it can be accessed from anywhere.

Insert the SD/MMC card (or microSD card) into your host PC card reader. Windows will detect the
new media. If the card is not formatted, a warning message will appear that the disk cannot be
used unless you format it. DO NOT FORMAT THE CARD. An unpartitioned card is needed for the
Windows version of dd program to be able to raw write the card.

Open a Command Prompt and run the following command to discover the identifier given by
Windows to the SD/MMC card:

$ dd --list
C:\Temp>dd --list
rawwrite dd for windows version 0.5.
Written by John Newbigin <jn@it.swin.edu.au>
This program is covered by the GPL. See copying.txt for details
Win32 Available Volume Information
\\.\Volume{6e4f119c-7aa7-11e1-a70b-806e6f6e6963}\
 link to \\?\Device\HarddiskVolume2
 fixed media
 Not mounted

\\.\Volume{e83ab88c-5e1d-11e2-8506-0004768fc2d3}\
 link to \\?\Device\HarddiskVolume3
 removeable media
 Mounted on \\.\e:

\\.\Volume{6e4f119b-7aa7-11e1-a70b-806e6f6e6963}\
 link to \\?\Device\HarddiskVolume1
 fixed media
 Mounted on \\.\c:

\\.\Volume{6e4f119f-7aa7-11e1-a70b-806e6f6e6963}\
 link to \\?\Device\Floppy0
 removeable media
 Mounted on \\.\a:

\\.\Volume{94e38262-7c99-11e1-bacd-806e6f6e6963}\
 link to \\?\Device\CdRom0
 CD-ROM
 Mounted on \\.\d:

NT Block Device Objects
\\?\Device\CdRom0
 size is 2147483647 bytes
\\?\Device\Floppy0
\\?\Device\Harddisk0\Partition0
 link to \\?\Device\Harddisk0\DR0
 Fixed hard disk media. Block size = 512

http://www.chrysocome.net/dd�

55

 size is 80000000000 bytes
\\?\Device\Harddisk0\Partition1
 link to \\?\Device\HarddiskVolume1
\\?\Device\Harddisk0\Partition2
 link to \\?\Device\HarddiskVolume2
\\?\Device\Harddisk1\Partition0
 link to \\?\Device\Harddisk1\DR1
 Removable media other than floppy. Block size = 512
 size is 7969177600 bytes
\\?\Device\Harddisk1\Partition1
 link to \\?\Device\HarddiskVolume3
 Removable media other than floppy. Block size = 512
 size is 7969177600 bytes

Virtual input devices
 /dev/zero (null data)
 /dev/random (pseudo-random data)
 - (standard input)

Virtual output devices
 - (standard output)
781+1 records in
781+1 records out
400196 bytes (400 kB) copied, 0.451786 s, 886 kB/s

Locate a Removable media other than floppy whose size matches the one of your SD/MMC
card. In the example, marked in yellow, our 8Gb card identifier is \\?\Device\Harddisk1\Partition0

If the card is already partitioned, the dd program might fail, so run the following command to
remove any existing partition table in the card:

(ignore additional partitions on the same card).

$ dd if=C:\Temp\u-boot-ccwmx53js.bin of=\\?\Device\Harddisk1\Partition0
rawwrite dd for windows version 0.5.
Written by John Newbigin <jn@it.swin.edu.au>
This program is covered by the GPL. See copying.txt for details
Error writing file: 5 Access is denied
2+0 records in
1+0 records out

Despite the error, the command will erase any existing partition table so that you can proceed to
write the boot loader.

Now run the following command to write the boot loader

$ dd if=C:\Temp\u-boot-ccwmx53js.bin of=\\?\Device\Harddisk1\Partition0
bs=512 seek=2 skip=2

rawwrite dd for windows version 0.5.
Written by John Newbigin <jn@it.swin.edu.au>
This program is covered by the GPL. See copying.txt for details
Error reading file: 87 The parameter is incorrect
790+1 records in
790+1 records out

The additional parameters place the boot loader two 512 bytes sectors after the start of the card,
allowing you to create a partition table after the card is bootable (explained in chapter 14.3.4.
Creating partitions in the bootable SD/MMC card).

After this, you can remove the card and proceed to chapter 14.3.3. Preparing the hardware
platform for further instructions.

14.3.2 ConnectCard for i.MX28

i.MX28 CPUs have a ROM loader that expects an SB boot image file that it can load. Apart of that
the media where this image resides must contain Boot Control Blocks (BCB) which allow multiple

56

copies of the firmware to be stored on the media. For this reason, a special formatting of the media
is needed to make it bootable.

14.3.2.1 Preparing the SD/MMC card (on a Linux host PC only)

Manually doing the special format required by i.MX28 CPU can be a lengthy process. For this
reason, Digi Embedded Linux distribution provides a script to generate a bootable SD/MMC card.
The script is located under the scripts folder on the DEL installation folder (/usr/local/DigiEL-
X.Y/scripts/mk_mx28_sd).

Insert the SD/MMC card (or microSD card) into your host PC card reader socket and check the
identifier assigned by Linux to the card. You can usually check this by running the dmesg
command and checking the last lines, right after inserting the card:

$ dmesg
[117953.837337] sdg: detected capacity change from 7969177600 to 0
[118258.629614] sd 10:0:0:0: [sdg] 15564800 512-byte logical blocks: (7.96
GB/7.42 GiB)
[118258.631335] sd 10:0:0:0: [sdg] No Caching mode page present
[118258.631340] sd 10:0:0:0: [sdg] Assuming drive cache: write through
[118258.633952] sd 10:0:0:0: [sdg] No Caching mode page present
[118258.633957] sd 10:0:0:0: [sdg] Assuming drive cache: write through
[118258.636662] sdg: unknown partition table

In the example above the card was identified as sdg.

Do not mount the SD/MMC card. If your system automatically
mounted it, umount all partitions before continuing.
Also notice that after the process, existing partitions might
become unusuable.

Locate the U-Boot image file (for example /tmp/u-boot-ccardwmx28js-ivt.sb) and run the script to
raw write it to the SD/MMC card (you may need root privileges):

$ cd /usr/local/DigiEL-X.Y/scripts
$./mk_mx28_sd -o -b /tmp/u-boot-ccardwmx28js-ivt.sb /dev/sdg
Insert the specified device (/dev/sdc) now, if you have not already done so.

This script requires the use of 'sudo' and erases the content of the
specified device (/dev/sdc)
Are you sure you want to continue? (yes/no):
yes

Command (m for help): Building a new DOS disklabel with disk identifier
0x0bc9bb7e.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)

Command (m for help): Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended
Select (default p): Partition number (1-4, default 1): First sector (2048-
7716863, default 2048): Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-7716863, default 7716863):
Command (m for help): Selected partition 1
Hex code (type L to list codes): Changed system type of partition 1 to b
(W95 FAT32)

Command (m for help): Partition type:
 p primary (1 primary, 0 extended, 3 free)
 e extended

57

Select (default p): Partition number (1-4, default 2): First sector (67584-
7716863, default 67584): Using default value 67584
Last sector, +sectors or +size{K,M,G} (67584-7716863, default 7716863):
Command (m for help): Partition number (1-4): Hex code (type L to list
codes): Changed system type of partition 2 to 53 (OnTrack DM6 Aux3)

Command (m for help): Partition type:
 p primary (2 primary, 0 extended, 2 free)
 e extended
Select (default p): Partition number (1-4, default 3): First sector (133120-
7716863, default 133120): Using default value 133120
Last sector, +sectors or +size{K,M,G} (133120-7716863, default 7716863):
Using default value 7716863

Command (m for help): Partition number (1-4): Hex code (type L to list
codes):
Command (m for help):
Disk /dev/sdc: 3951 MB, 3951034368 bytes
122 heads, 62 sectors/track, 1020 cylinders, total 7716864 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0bc9bb7e

 Device Boot Start End Blocks Id System
/dev/sdc1 2048 67583 32768 b W95 FAT32
/dev/sdc2 67584 133119 32768 53 OnTrack DM6 Aux3
/dev/sdc3 133120 7716863 3791872 83 Linux

Command (m for help): The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.

Installing boot stream /tftpboot/u-boot-ccardwmx28js-ivt.sb on /dev/sdc2...
0+1 records in
1+0 records out
512 bytes (512 B) copied, 0.672998 s, 0.8 kB/s
722+1 records in
723+0 records out
370176 bytes (370 kB) copied, 0.165805 s, 2.2 MB/s
...finished installing boot stream on /dev/sdc2.

0
Omitting rootfs install.

Done! Plug the SD/MMC card into the i.MX board and power-on.

where /tmp/u-boot-ccardwmx28js-ivt.sb must be substituted with the path to your U-Boot image
and /dev/sdg must be substituted with the device assigned by Linux to your SD/MMC card.

After this, you can remove the card and proceed to chapter 14.3.3. Preparing the hardware
platform for further instructions.

14.3.3 Preparing the hardware platform

Although the JumpStart kit is by default configured to boot from the flash memory in the module,
jumpers or microswitches on the development board allow you to establish a different configuration
to force the module to boot from the SD/MMC or microSD card.

58

Please refer to the Hardware Reference Manual of your JumpStart kit for instructions about setting
the needed jumpers/microswitches configuration to force boot from SD/MMC or microSD card.

Once the needed hardware configuration is done, insert the card in the JumpStart socket and
power up the module. U-Boot should then boot from the SD/MMC card, allowing you to recover the
boot loader in the flash.

14.3.4 Creating partitions in the bootable SD/MMC card

The bootable card created in the previous paragraphs has no partitions and it’s not formatted. We
can create different partitions with different formats (FAT, ext2, ext3,…) while keeping the card
bootable. For this we can use any partition manager software.

The only caveat to have in mind when creating a partition table is to place the first partition at an
offset of at least 1MiB after the start of the media, to avoid overwriting the boot loader that is at the
first sectors.

Due to the special formatting of bootable SD/MMC card for
i.MX28 based platforms, these cards cannot hold a partition
table and can only be used for booting.

	1. Conventions used in this manual
	2. Acronyms and Abbreviations
	3. Introduction
	3.1 What is a boot loader?
	3.2 What is U-Boot?
	3.3 Features of U-Boot
	3.3.1 Customizable footprint
	3.3.2 Monitor
	3.3.3 Variables
	3.3.4 Ethernet and USB
	3.3.5 Numbers

	3.4 The boot process

	4. U-Boot commands
	4.1 Overview
	4.2 Built-in commands
	4.2.1 Information commands
	4.2.2 MII commands
	4.2.3 Network commands
	4.2.4 USB commands
	4.2.5 Memory commands
	4.2.6 Serial port commands
	4.2.7 Environment variables commands
	4.2.8 E-Fuses/OTP bits

	5. Environment variables
	5.1 Overview
	Simple and recursive variables
	5.3 Scripts
	5.4 System variables
	5.4.1 Common system variables
	5.4.2 Network related variables
	5.4.3 Dynamic variables
	5.4.4 User keys
	5.4.5 Protected variables
	5.4.6 Hostname

	6. Network interfaces
	6.1 Number of interfaces
	6.2 Primary network interface
	6.3 Active network interface

	7. Bootscript
	7.1 Bootscript process
	7.2 Creating a bootscript
	7.2.1.1 Final carriage return
	7.2.1.2 Windows line-end characters

	7.3 Configuration for launching the bootscript
	7.4 Bootscript restrictions

	8. Boot commands
	8.1 Overview
	8.2 Reading images into RAM
	8.2.1 From Ethernet
	8.2.2 From USB
	8.2.3 From SD/MMC card
	8.2.4 From SATA disk
	8.2.5 From flash

	8.3 Booting images in RAM
	8.4 Direct booting
	8.4.1 Boot examples

	8.5 Automatic booting

	9. Using NVRAM
	9.1 The 'flpart' command
	9.1.1 A partition table entry
	9.1.2 Changing the partition table

	9.2 The ‘intnvram’ command
	9.2.1 Mappings of variables

	10. Firmware update commands
	10.1 Overview
	10.2 Updating flash with images in RAM
	10.3 Direct updating
	10.3.1 Update limits
	10.3.2 TFTP on-the-fly update mechanism

	11. Customize U-Boot
	11.1 Overview
	11.2 Silent Console
	11.3 Video interface
	11.3.1 Initialize video interface
	11.3.2 Custom LCD displays
	11.3.3 Selecting the primary video interface

	11.4 Splash screen support
	11.4.1 Creating a splash partition
	Uploading a splash image
	11.4.3 Initialize video interface

	11.5 Dual boot mechanism
	11.5.1 Overview
	11.5.2 Enabling Dual boot mechanism
	11.5.3 Dual boot modes
	11.5.3.1 Peer mode
	11.5.3.2 Rescue mode

	11.5.4 Detecting a corrupt system
	11.5.4.1 Marking a system as valid
	11.5.4.2 Maximum boot attempts and switch to alternate system

	11.5.5 Start up guarantee modes
	11.5.5.1 Per boot start up guarantee mode
	11.5.5.2 After update start up guarantee mode

	11.5.6 Watchdog to reset a corrupt system
	11.5.7 Update process in U-Boot
	11.5.7.1 Update on peer mode
	11.5.7.2 Update on rescue mode

	11.5.8 Additional notes on dual boot

	12. Boot different operating systems
	12.1 Media requirements
	12.2 Booting the different operating systems
	12.2.1 Boot commands
	12.2.2 Choosing the operating system to boot

	13. U-Boot development
	14. Recovering a device
	14.1 Using Digi J-Link
	14.2 Loading a boot loader via USB
	14.3 Loading a boot loader from SD/MMC card
	14.3.1 ConnectCore for i.MX51 and ConnectCore for i.MX53 platforms
	14.3.1.1 Preparing the SD/MMC card (on a Linux host PC)
	14.3.1.2 Preparing the SD/MMC card (on a Windows host PC)

	14.3.2 ConnectCard for i.MX28
	14.3.2.1 Preparing the SD/MMC card (on a Linux host PC only)

	14.3.3 Preparing the hardware platform
	14.3.4 Creating partitions in the bootable SD/MMC card

