DATA SHEET

Part No.	AN26065A
Package Code No.	ALGA011-W-0912ANA

Panasonic

Contents

Overview	3
■ Features	3
Applications	3
Package	3
■ Туре	3
■ Application Circuit Example (Block Diagram)	4
Pin Descriptions	6
■ Current and Voltage Ranges for Pins	7
Absolute Maximum Ratings	8
■ Operating Supply Voltage Range	8
Electrical Characteristics	9
■ Electrical Characteristics (Referred design parameters)	13
Control Pin Mode Table	26
■ Technical Data	27
• I/O block circuit diagrams and pin function descriptions	27
• $P_D - T_a$ diagram	29
Usage Notes	30

AN26065A UMTS Triple Band LNA-IC (Band I, II, IV, IX / V, XIII)

Overview

- \bullet AN26065A is LNA-IC for triple band (Band I, II, IV, IX / V, XIII) UMTS.
- Realizing high performance by using 0.18 μ m SiGeC Bi-CMOS process ($f_T = 90$ GHz, $f_{max} = 140$ GHz).

• Each Band is selectable and High/Low Gain-mode is changeable, controlled by integrated CMOS logic circuit.

• Achieving miniaturization by using small size package.

[Unit: MHz]

		[Unit. WHIZ]
Band	ТХ	RX
Ι	1920 to 1980	2110 to 2170
II	1850 to 1910	1930 to 1990
III	1710 to 1785	1805 to 1880
IV	1710 to 1755	2110 to 2155
V	824 to 849	869 to 894
VI	830 to 840	875 to 885
VII	2500 to 2570	2620 to 2690
VIII	880 to 915	925 to 960
IX	1750 to 1785	1845 to 1880

Features

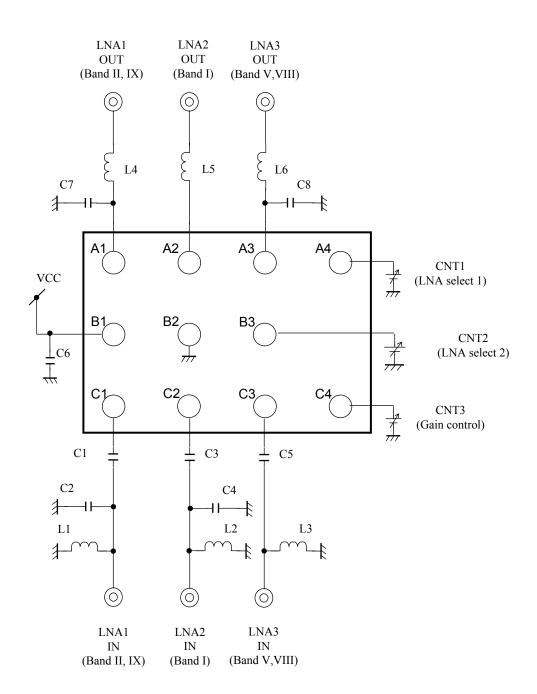
 Low voltage operation 	+2.85 V typ.		
• Low current consumption	4.7 mA typ.	(High-Gain mode)	
	25 µA typ.	(Low-Gain mode)	
• High gain(Gain)	16.5 dB typ.	fRX = 2140 MHz	(High-Gain mode)
	16.5 dB typ.	fRX = 881.5 MHz	(High-Gain mode)
	16.3 dB typ.	fRX = 1960 MHz	(High-Gain mode)
 Low noise figure(NF) 	1.40 dB typ.	fRX = 2140 MHz	(High-Gain mode)
	1.10 dB typ.	fRX = 881.5 MHz	(High-Gain mode)
	1.40 dB typ.	fRX = 1960 MHz	(High-Gain mode)
 Low distortion 	2.0 dBm typ.	fRX = 2140 MHz	(High-Gain mode)
(IIP3 +10 MHz offset)	4.0 dBm typ.	fRX = 881.5 MHz	(High-Gain mode)
	2.5 dBm typ.	fRX = 1960 MHz	(High-Gain mode)

• Small package(WLCSP)

Applications

• Triple-band UMTS handset.

Package

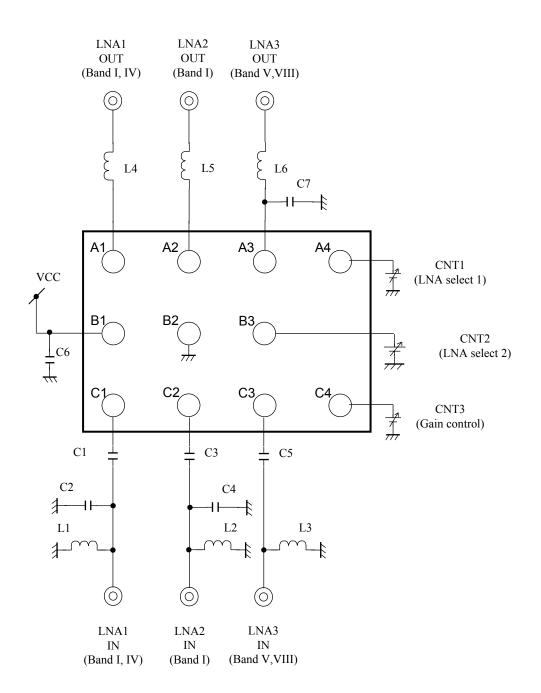

• 11 pin Wafer level chip size package (WLCSP) Size : 0.86 mm × 1.16 mm (0.3 mm pitch)

■ Туре

• Bi-CMOS IC

■ Application Circuit Example 1 (Block Diagram) Note) See "External parts 1" on Page47.

(Top View)



Notes) • This application circuit is shown as an example but does not guarantee the design for mass production set.

• This block diagram is for explaining functions. The part of the block diagram may be omitted, or it may be simplified.

■ Application Circuit Example 2 (Block Diagram) Note) See "External parts 2" on Page48.

(Top View)

Notes) • This application circuit is shown as an example but does not guarantee the design for mass production set.

• This block diagram is for explaining functions. The part of the block diagram may be omitted, or it may be simplified.

Panasonic

Pin Descriptions

Pin No.	Pin name	Туре	Description
A1	OUT1	Output	LNA1 RF Output (Band I, II, IV, IX)
A2	OUT2	Output	LNA2 RF Output (Band I)
A3	OUT3	Output	LNA3 RF Output (Band V, VIII)
A4	CNT1	Input	LNA select SW input 1
B1	VCC	Power Supply	V _{cc}
B2	GND	Ground	GND
B3	CNT2	Input	LNA select SW input 2
B4	N.C.		N.C.
C1	IN1	Input	LNA1 RF Input (Band I, II, IV, IX)
C2	IN2	Input	LNA2 RF Input (Band I)
C3	IN3	Input	LNA3 RF Input (Band V, VIII)
C4	CNT3	Input	High-Gain / Low-Gain SW input

Current and Voltage Ranges for Pins

Note) • The ranges on the list are the voltages of respective pins in relation to GND.

• Do not apply the voltages or the currents from external into the pins which are not on the list.

• The values shows voltage to the GND unless otherwise specified. (+) is inlet current and (-) is outlet current in the circuit.

- Voltage applying exceeding below ratings leads to the malfunction and the damage of the device.
- Below ratings are specified regarding malfunction and stress, not for operation guaranty.

Pin No.	Pin name	Range	Unit	Note
A1	OUT1	-0.3 to (V _{CC})	V	_
A2	OUT2	-0.3 to (V _{CC})	V	_
A3	OUT3	-0.3 to (V _{CC})	V	_
A4	CNT1	-0.3 to (V _{CC})	V	_
B1	VCC	0 to 3.0	V	
B2	GND	0	V	*1
В3	CNT2	-0.3 to (V _{CC})	V	_
B4	N.C.	—	V	_
C1	IN1		V	*2
C2	IN2		V	*2
C3	IN3		V	*2
C4	CNT3	-0.3 to (V _{CC})	V	

Notes) *1 : Same as GND pin.

*2 : RF signal input pin. (Maximum input power is 0dBm.) Do not apply DC voltages.

Absolute Maximum Ratings

Note) Absolute maximum ratings are limit values which are not destructed, and are not the values to which operation is guaranteed.

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage	V _{CC}	3.6	V	*1
2	Supply current	I _{CC}	10	mA	—
3	Power dissipation	P _D	31	mW	*2
4	Operating ambient temperature	T _{opr}	-30 to +85	°C	*3
5	Storage temperature	T _{stg}	-40 to +125	°C	*3

Notes)*1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 : The power dissipation shown is the value at $T_a = 85^{\circ}$ C for the independent (unmounted) IC package without a heat sink. When using this IC, refer to • $P_D - T_a$ diagram in the \blacksquare Technical Data and design the heat radiation with sufficient margin so that the allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature.

*3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Notes
Supply voltage range	V _{CC}	2.65 to 3.00	V	*1

Note) *1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

■ Electrical Characteristics at V_{CC} = 2.85 V Notes) • All parameters are specified under T_a = 25°C±2°C unless otherwise specified.

B No.	Parameter	Symbol	Conditions	Limits			Linit	Notes
B NO.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
DC elec	ctrical characteristics							
DC-1	Circuit current HG (LNA2)	IccHa	V _{CC} current at LNA2 High-Gain mode. No input signal		4.7	6.3	mA	
DC-2	Circuit current HG (LNA3)	IccHb	V _{CC} current at LNA3 High-Gain mode. No input signal		4.1	5.5	mA	
DC-3	Circuit current HG (LNA1)	ІсеНс	V _{CC} current at LNA1 High-Gain mode. No input signal		4.7	6.3	mA	
DC-4	Circuit current LG (LNA2)	IccLa	V _{CC} current at LNA2 Low-Gain mode. No input signal		11	60	μΑ	
DC-5	Circuit current LG (LNA3)	IccLb	V _{CC} current at LNA3 Low-Gain mode. No input signal		25	80	μΑ	_
DC-6	Circuit current LG (LNA1)	IccLc	V _{CC} current at LNA1 Low-Gain mode. No input signal		25	80	μA	_
DC-7	SW voltage (High)	VIH	_	1.60			V	
DC-8	SW voltage (Low)	VIL	$VIL = V_{CC} \times 0.20$	0.0	_	0.6	V	
DC-9	SW current (High)	IIH	Current at CNT pin VIH = V_{CC}		10	20	μΑ	

■ Electrical Characteristics (continued) at V_{CC} = 2.85 V
 Notes) • All parameters are specified under T_a = 25°C±2°C, fRXa = 2 140 MHz, PRX = -30 dBm, CW unless otherwise specified.
 • Input/output connector & substrate loss (0.34 dB/0.34 dB) included.

B No.	Deremeter	Symbol	Conditions	Limits			Unit	Notes
Б NO.	Parameter	Symbol	Conditions	Min	Тур	Max		Notes
LNA2 :	AC electrical characteristics (BAI	NDI)						
A-1	Power Gain HG	GHSa	High-Gain mode $f = fRXa$	15.0	16.5	18.0	dB	
A-2	Power Gain LG	GLSa	Low-Gain mode $f = fRXa$	-9.0	-7.0	-5.0	dB	
A-3	IIP3 +10 MHz detuning HG	IIP3H1Sa	High-Gain mode f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz Input 2 signals (f1, f2)	-2.5	2.0		dBm	
A-4	IIP3 -10 MHz detuning HG	IIP3H2Sa	High-Gain mode f1 = fRXa - 10 MHz f2 = fRXa - 20 MHz Input 2 signals (f1, f2)	-1.5	3.0		dBm	

■ Electrical Characteristics (continued) at V_{CC} = 2.85 V
 Notes) • All parameters are specified under T_a = 25°C±2°C, fRXb = 881.5 MHz, PRX = -30 dBm, CW unless otherwise specified.
 • Input/output connector & substrate loss (0.15 dB/0.15 dB) included.

B No.	Parameter	Symbol	Conditions	Limits			Unit	Notes
D NO.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA3 : .	AC electrical characteristics (BAN	ND V)						
B-1	Power Gain HG	GHSb	High-Gain mode $f = fRXb$	15.0	16.5	17.7	dB	_
В-2	Power Gain LG	GLSb	Low-Gain mode $f = fRXb$	-7.5	-5.5	-3.5	dB	_
В-3	IIP3 +10 MHz detuning HG	IIP3H1Sb	High-Gain mode fl = fRXb + 10 MHz f2 = fRXb + 20 MHz Input 2 signals (f1, f2)	- 0.5	4.0	_	dBm	
В-4	IIP3 -10 MHz detuning HG	IIP3H2Sb	High-Gain mode f1 = $fRXb - 10 MHz$ f2 = $fRXb - 20 MHz$ Input 2 signals (f1, f2)	- 0.5	3.0		dBm	

■ Electrical Characteristics (continued) at V_{CC} = 2.85 V
 Notes) • All parameters are specified under T_a = 25°C±2°C, fRXc = 1 960 MHz, PRX = -30 dBm, CW unless otherwise specified.
 • Input/output connector & substrate loss (0.32 dB/0.32 dB) included.

B No.	Deremeter	Symbol	Conditions	Limits		imits		Notes
D NO.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
LNA1 :	AC electrical characteristics (BA	ND II)						
C-1	Power Gain HG	GHSc	High-Gain mode f = fRXc	14.8	16.3	17.8	dB	_
C-2	Power Gain LG	GLSc	Low-Gain mode $f = fRXc$	-9.0	-7.0	-5.0	dB	
C-3	IIP3 +10 MHz detuning HG	IIP3H1Sc	High-Gain mode f1 = fRXc + 10 MHz f2 = fRXc + 20 MHz Input 2 signals (f1, f2)	-1.5	2.5		dBm	
C-4	IIP3 -10 MHz detuning HG	IIP3H2Sc	High-Gain mode f1 = fRXc - 10 MHz f2 = fRXc - 20 MHz Input 2 signals (f1, f2)	0.0	2.5		dBm	

- Electrical Characteristics (Reference values for design) at $V_{CC} = 2.85 \text{ V}$ Notes) All parameters are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXa = 2 110 MHz to 2 170 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.
 - If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
 - Input/output connector & substrate loss (0.34dB/0.34dB) included.

B No.	Parameter	Symbol	Conditions	Reference values		Unit	Notes	
D INU.	Falametei	Symbol	Conditions	Min	Тур	Max	Unit	notes
LNA2 :	AC electrical characteristics (BAI	NDI)						
D-1	Power Gain HG	GHa	High-Gain mode f = fRXa	15.0	16.5	18.0	dB	—
D-2	Power Gain LG	GLa	Low-Gain mode $f = fRXa$	-9.0	-7.0	-5.0	dB	_
D-3	Noise figure HG	NFHa	High-Gain mode $f = fRXa$	_	1.40	1.80	dB	_
D-4	Noise figure LG	NFLa	Low-Gain mode $f = fRXa$	_	7.0	10.0	dB	_
D-5	IIP3 +10 MHz detuning HG	IIP3H1a	High-Gain mode f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz Input 2 signals (f1, f2)	-2.5	2.0		dBm	
D-6	IIP3 -10 MHz detuning HG	IIP3H2a	High-Gain mode f1 = $fRXa - 10$ MHz f2 = $fRXa - 20$ MHz Input 2 signals (f1, f2)	-1.5	3.0		dBm	
D-7	IIP3 +10 MHz detuning LG	IIP3L1a	Low-Gain mode f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	20	25		dBm	
D-8	IIP3 -10 MHz detuning LG	IIP3L2a	Low-Gain mode f1 = fRXa - 10 MHz f2 = fRXa - 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	20	26		dBm	_
D-9	Input P1dB	IP1dBH1a	High-Gain mode f = fRXa	-22	-16	_	dBm	_
D-10	Input P1dB TX undesired signal input HG	IP1dBH2a	High-Gain mode f1 = fRXa PRX1 = -40 dBm f2 = fRXa - 190 MHz PRX2 : Var. Input 2 signals (f1, f2)	-17	-10		dBm	

■ Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V

Notes) • All parameters are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXa = 2110 MHz to 2170 MHz, PRX = -30 dBm, CW unless otherwise specified.

- The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
- Input/output connector & substrate loss (0.34 dB/0.34 dB) included.

	Deremeter	Cumphiel	Conditions	Refe	rence v	alues	Linit	Notes
B No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA2 :	AC electrical characteristics (BA	NDI)						
D-11	IIP2	IIP2H1a	High-Gain mode f1 = fRXa - 190 MHz f2 = 190 MHz Input 2 signals (f1, f2)	10	15		dBm	_
D-12	IIP2	IIP2H2a	High-Gain mode f1 = fRXa - 190 MHz $f2 = 2 \times fRXa - 190 \text{ MHz}$ Input 2 signals (f1, f2)	10	16		dBm	_
D-13	K-factor	КНа	High-Gain mode f = 0 to 6 GHz	2.0	4.0		_	_
D-14	Reverse isolation HG	ISOHa	High-Gain mode f = fRXa	_	-30	-20	dB	_
D-15	Reverse isolation LG	ISOLa	Low-Gain mode f = fRXa	_	-7.0	-4.0	dB	_
D-16	Band to band isolation	BISa	LNA1 / LNA3 :High-Gain mode LNA2:off LNA2 input \rightarrow LNA2 output f = fRXa	_	-30	-27	dB	_
D-17	Input return loss HG	S11Ha	High-Gain mode f = fRXa	6.5	9.5		dB	_
D-18	Input return loss LG	S11La	Low-Gain mode f = fRXa	8.5	9.5		dB	_
D-19	Output return loss HG	S22Ha	High-Gain mode f = fRXa	8.5	9.5		dB	_
D-20	Output return loss LG	S22La	Low-Gain mode f = fRXa	8.5	9.5		dB	_
D-21	Gain Changing Time	TCGa	$Low \rightarrow High / High \rightarrow Low$ f = 2 170 MHz Gain Error < 1 dB		7	16	μs	_
D-22	Band Changing Time	BCGa	$LNA3 \rightarrow LNA2$ f = 2 170 MHz $LNA1 \rightarrow LNA2$ f = 2 170 MHz High Gain Mode Gain Error < 1 dB		7	16	μs	

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb1 = 869 MHz to 894 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

- If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
- Input/output connector & substrate loss (0.15 dB/0.15 dB) included.

B No.	Parameter	Cumphal	Conditions	Refe	rence v	alues	Unit	Notes
D INU.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA3 :	AC electrical characteristics (BA	NDV)						
E-1	Power Gain HG	GHb1	High-Gain mode f = fRXb1	15.0	16.5	17.7	dB	
E-2	Power Gain LG	GLb1	Low-Gain mode $f = fRXb1$	-7.5	-5.5	-3.5	dB	
E-3	Noise figure HG	NFHb1	High-Gain mode f = fRXb1	_	1.10	1.35	dB	_
E-4	Noise figure LG	NFLb1	Low-Gain mode f = fRXb1	_	5.5	8.5	dB	_
E-5	IIP3 +10 MHz detuning HG	IIP3H1b1	High-Gain mode f1 = $fRXb1 + 10$ MHz f2 = $fRXb1 + 20$ MHz Input 2 signals (f1, f2)	- 0.5	4.5		dBm	_
E-6	IIP3 –10 MHz detuning HG	IIP3H2b1	High-Gain mode f1 = fRXb1 - 10 MHz f2 = fRXb1 - 20 MHz Input 2 signals (f1, f2)	- 0.5	3.0		dBm	
E-7	IIP3 +10 MHz detuning LG	IIP3L1b1	Low-Gain mode f1 = $fRXb1 + 10 MHz$ f2 = $fRXb1 + 20 MHz$ PRX1 = PRX2 = $-10 dBm$ Input 2 signals (f1, f2)	18	22		dBm	
E-8	IIP3 –10 MHz detuning LG	IIP3L2b1	Low-Gain mode f1 = fRXb1 - 10 MHz f2 = fRXb1 - 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	18	23		dBm	
E-9	Input P1dB	IP1dBH1b1	High-Gain mode f = fRXb1	-21	-14		dBm	_
E-10	Input P1dB TX undesired signal input HG	IP1dBH2b1	High-Gain mode f1 = fRXb1 PRX1 = -40 dBm f2 = fRXb1 - 45 MHz PRX2 : Var. Input 2 signals (f1, f2)	-20	-13		dBm	_

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb1 = 869 MHz to 894 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

- If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
- Input/output connector & substrate loss (0.15 dB/0.15 dB) included.

B No.	Parameter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
D NO.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA3 :	AC electrical characteristics (BA	ND V)				_		
E-11	IIP2	IIP2H1b1	High-Gain mode f1 = $fRXb1 - 45$ MHz f2 = 45 MHz Input 2 signals (f1, f2)	12	17		dBm	_
E-12	IIP2	IIP2H2b1	High-Gain mode f1 = fRXb1 - 45 MHz $f2 = 2 \times fRXb1 - 45$ MHz Input 2 signals (f1, f2)	-1.5	2.5		dBm	_
E-13	K-factor	KHb1	High-Gain mode $f = 0$ to 6 GHz	1.5	2.0		_	_
E-14	Reverse isolation HG	ISOHb1	High-Gain mode f = fRXb1		-24	-18	dB	_
E-15	Reverse isolation LG	ISOLb1	Low-Gain mode f = fRXb1		-6.0	-3.0	dB	_
E-16	Band to band isolation	BISb1	LNA2 :High-Gain mode LNA3:off LNA3 input \rightarrow LNA3 output f = fRXb1		-24	-20	dB	
E-17	Input return loss HG	S11Hb1	High-Gain mode f = fRXb1	8	9.5		dB	_
E-18	Input return loss LG	S11Lb1	Low-Gain mode f = fRXb1	6	6.5		dB	_
E-19	Output return loss HG	S22Hb1	High-Gain mode f = fRXb1	8.5	9.5		dB	_
E-20	Output return loss LG	S22Lb1	Low-Gain mode f = fRXb1	8.5	9.5		dB	_
E-21	Gain Changing Time	TCGb1	Low \rightarrow High / High \rightarrow Low f = 960 MHz Gain Error < 1 dB		7.5	18	μs	
E-22	Band Changing Time	TCBb1	$LNA2 \rightarrow LNA3$ f = 960 MHz High Gain Mode Gain Error < 1 dB		7.5	18	μs	_

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb2 = 925 MHz to 960 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

- If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
- Input/output connector & substrate loss (0.15 dB/0.15 dB) included.

B No.	Parameter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
D INU.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA3 :	AC electrical characteristics (BA	ND VIII)		_			_	
F-1	Power Gain HG	GHb2	High-Gain mode f = fRXb2	14.7	16.2	17.4	dB	_
F-2	Power Gain LG	GLb2	Low-Gain mode $f = fRXb2$	-7.5	-5.5	-3.5	dB	_
F-3	Noise figure HG	NFHb2	High-Gain mode f = fRXb2	_	1.10	1.35	dB	
F-4	Noise figure LG	NFLb2	Low-Gain mode $f = fRXb2$	_	5.5	8.5	dB	
F-5	IIP3 +10 MHz detuning HG	IIP3H1b2	High-Gain mode f1 = fRXb2 + 10 MHz f2 = fRXb2 + 20 MHz Input 2 signals (f1, f2)	-1.0	4.0		dBm	_
F-6	IIP3 -10 MHz detuning HG	IIP3H2b2	High-Gain mode f1 = fRXb2 - 10 MHz f2 = fRXb2 - 20 MHz Input 2 signals (f1, f2)	- 0.5	3.0		dBm	_
F-7	IIP3 +10 MHz detuning LG	IIP3L1b2	Low-Gain mode f1 = $fRXb2 + 10 \text{ MHz}$ f2 = $fRXb2 + 20 \text{ MHz}$ PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	17	22		dBm	
F-8	IIP3 -10 MHz detuning LG	IIP3L2b2	Low-Gain mode f1 = fRXb2 - 10 MHz f2 = fRXb2 - 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	17	22		dBm	
F-9	Input P1dB	IP1dBH1b2	High-Gain mode f = fRXb2	-21	-14		dBm	_
F-10	Input P1dB TX undesired signal input HG	IP1dBH2b2	High-Gain mode f1 = fRXb2 PRX1 = -40 dBm f2 = fRXb2 - 45 MHz PRX2 : Var. Input 2 signals (f1, f2)	-17	-10		dBm	

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb2 = 925 MHz to 960 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

• Input/output connector & substrate loss (0.15 dB/0.15 dB) included.

B No.	Deremeter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
B NO.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
LNA3 :	AC electrical characteristics (BA	ND VIII)						
F-11	IIP2	IIP2H1b2	High-Gain mode f1 = fRXb2 - 45 MHz f2 = 45 MHz Input 2 signals (f1, f2)	12	17	_	dBm	_
F-12	IIP2	IIP2H2b2	High-Gain mode f1 = fRXb2 - 45 MHz $f2 = 2 \times fRXb2 - 45$ MHz Input 2 signals (f1, f2)	-1.5	3.5		dBm	_
F-13	K-factor	KHb2	High-Gain mode $f = 0$ to 6 GHz	1.5	2.0			—
F-14	Reverse isolation HG	ISOHb2	High-Gain mode f = fRXb2		-24	-18	dB	
F-15	Reverse isolation LG	ISOLb2	Low-Gain mode f = fRXb2		-6.0	-3.0	dB	_
F-16	Band to band isolation	BISb2	LNA2 :High-Gain mode LNA3:off LNA3 input \rightarrow LNA3 output f = fRXb2		-24	-20	dB	
F-17	Input return loss HG	S11Hb2	High-Gain mode f = fRXb2	8.5	9.5		dB	
F-18	Input return loss LG	S11Lb2	Low-Gain mode f = fRXb2	5.5	6.0		dB	
F-19	Output return loss HG	S22Hb2	High-Gain mode f = fRXb2	8.5	9.5		dB	_
F-20	Output return loss LG	S22Lb2	Low-Gain mode f = fRXb2	8.5	9.5	_	dB	
F-21	Gain Changing Time	TCGb2	Low \rightarrow High / High \rightarrow Low f = 960 MHz Gain Error < 1 dB		7.5	18	μs	
F-22	Band Changing Time	TCBb2	$LNA2 \rightarrow LNA3$ f = 960 MHz High Gain Mode Gain Error < 1 dB		7.5	18	μs	_

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc1 = 2 110 MHz to 2 170 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

[•] Input/output connector & substrate loss (0.34 dB/0.34 dB) included.

B No.	Parameter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
D INO.	Parameter	Symbol	Conditions	Min	Тур	Max	Onit	notes
LNA1 :	AC electrical characteristics (BA	NDI)		_	_			
G-1	Power Gain HG	GHc1	High-Gain mode f = fRXc1	14.6	16.1	17.8	dB	
G-2	Power Gain LG	GLc1	Low-Gain mode f = fRXc1	-9.0	-7.0	-5.0	dB	
G-3	Noise figure HG	NFHc1	High-Gain mode f = fRXc1		1.50	2.00	dB	_
G-4	Noise figure LG	NFLc1	Low-Gain mode $f = fRXc1$		7.0	10.0	dB	
G-5	IIP3 +10 MHz detuning HG	IIP3H1c1	High-Gain mode f1 = fRXc1 + 10 MHz f2 = fRXc1 + 20 MHz Input 2 signals (f1, f2)	-1.5	2.5		dBm	
G-6	IIP3 –10 MHz detuning HG	IIP3H2c1	High-Gain mode f1 = fRXc1 - 10 MHz f2 = fRXc1 - 20 MHz Input 2 signals (f1, f2)	0.0	2.5		dBm	
G-7	IIP3 +10 MHz detuning LG	IIP3L1c1	Low-Gain mode f1 = fRXc1 + 10 MHz f2 = fRXc1 + 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	19	24		dBm	
G-8	IIP3 –10 MHz detuning LG	IIP3L2c1	Low-Gain mode f1 = fRXc1 - 10 MHz f2 = fRXc1 - 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	20	25		dBm	
G-9	Input P1dB	IP1dBH1c1	High-Gain mode f = fRXc1	-21	-14		dBm	
G-10	Input P1dB TX undesired signal input HG	IP1dBH2c1	High-Gain mode f1 = fRXc1 PRX1 = -40 dBm f2 = fRXc1 - 190 MHz PRX2 : Var. Input 2 signals (f1, f2)	-16	-9		dBm	

- Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc1 = 2 110 MHz to 2 170 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.
 - If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
 - Input/output connector & substrate loss (0.34 dB/0.34 dB) included.

B No.	Deremeter	Cumphic	Conditions	Reference values		Unit	Notes	
D INO.	Parameter	Symbol	Conditions	Min	Тур	Max	Onit	notes
LNA1 :	AC electrical characteristics (BAI	NDI)						
G-11	IIP2	IIP2H1c1	High-Gain mode f1 = fRXc1 - 190 MHz f2 = 190 MHz Input 2 signals (f1, f2)	11	19	_	dBm	
G-12	IIP2	IIP2H2c1	High-Gain mode f1 = fRXc1 - 190 MHz $f2 = 2 \times fRXc1 - 190 \text{ MHz}$ Input 2 signals (f1, f2)	10	18		dBm	
G-13	K-factor	KHc1	High-Gain mode f = 0 to 6 GHz	1.5	2.0		_	_
G-14	Reverse isolation HG	ISOHc1	High-Gain mode f = fRXc1	_	-30	-20	dB	_
G-15	Reverse isolation LG	ISOLc1	Low-Gain mode f = fRXc1	_	-7.0	-4.0	dB	
G-16	Band to band isolation	BISc1	LNA2 :High-Gain mode LNA1:off LNA1 input \rightarrow LNA1 output f = fRXc1		-26	-23	dB	
G-17	Input return loss HG	S11Hc1	High-Gain mode f = fRXc1	8.5	9.5		dB	
G-18	Input return loss LG	S11Lc1	Low-Gain mode f = fRXc1	8.5	9.5		dB	
G-19	Output return loss HG	S22Hc1	High-Gain mode f = fRXc1	8.5	9.5		dB	
G-20	Output return loss LG	S22Lc1	Low-Gain mode f = fRXc1	8.5	9.5		dB	
G-21	Gain Changing Time	TCGc1	Low \rightarrow High / High \rightarrow Low f = 2170 MHz Gain Error < 1 dB		7	16	μs	
G-22	Band Changing Time	TCBc1	$LNA2 \rightarrow LNA1$ f = 2170 MHz High Gain Mode Gain Error < 1 dB		7	16	μs	

■ Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V

All parameters are specified T_a = 25°C±2°C, fRXc2 = 1 930 MHz to 1 990 MHz, PRX = -30 dBm, CW unless otherwise specified.
 The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns. • Input/output connector & substrate loss (0.32 dB/0.32 dB) included.

Reference values B No. Parameter Symbol Conditions Unit Notes Min Тур Max LNA1 : AC electrical characteristics (BAND II) High-Gain mode H-1 Power Gain HG GHc2 14.8 16.3 17.8 dB f = fRXc2Low-Gain mode H-2 Power Gain LG GLc2 -9.0 -7.0-5.0 dB f = fRXc2High-Gain mode Н-3 NFHc2 1.40 1.80 dB Noise figure HG ____ ____ f = fRXc2Low-Gain mode H-4 Noise figure LG NFLc2 7.0 10.0 dB ____ f = fRXc2High-Gain mode f1 = fRXc2 + 10 MHzIIP3 H-5 IIP3H1c2 -1.52.5 dBm +10 MHz detuning HG f2 = fRXc2 + 20 MHzInput 2 signals (f1, f2) High-Gain mode f1 = fRXc2 - 10 MHzIIP3 H-6 IIP3H2c2 0.0 2.5 dBm -10 MHz detuning HG f2 = fRXc2 - 20 MHzInput 2 signals (f1, f2) Low-Gain mode f1 = fRXc2 + 10 MHzIIP3 f2 = fRXc2 + 20 MHzH-7 IIP3L1c2 19 24 dBm +10 MHz detuning LG PRX1 = PRX2 = -10 dBmInput 2 signals (f1, f2) Low-Gain mode f1 = fRXc2 - 10 MHzIIP3 H-8 IIP3L2c2 f2 = fRXc2 - 20 MHz19 24 dBm -10 MHz detuning LG PRX1 = PRX2 = -10 dBmInput 2 signals (f1, f2) High-Gain mode H-9 IP1dBH1c2 Input P1dB -20 dBm -13f = fRXc2High-Gain mode f1 = fRXc2Input P1dB PRX1 = -40 dBmH-10 IP1dBH2c2 -18-11dBm f2 = fRXc2 - 80 MHzTX undesired signal input HG PRX2 : Var. Input 2 signals (f1, f2)

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc2 = 1 930 MHz to 1 990 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

• Input/output connector & substrate loss (0.32 dB/0.32 dB) included.

B No.	Parameter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
D NO.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA1 :	AC electrical characteristics (BAN	ND II)						
H-11	IIP2	IIP2H1c2	High-Gain mode f1 = fRXc2 - 80 MHz f2 = 80 MHz Input 2 signals (f1, f2)	20	26		dBm	
H-12	IIP2	IIP2H2c2	High-Gain mode f1 = fRXc2 - 80 MHz $f2 = 2 \times fRXc2 - 80$ MHz Input 2 signals (f1, f2)	12	19		dBm	
Н-13	K-factor	KHc2	High-Gain mode $f = 0$ to 6 GHz	1.5	2.0			
H-14	Reverse isolation HG	ISOHc2	High-Gain mode f = fRXc2		-30	-20	dB	_
Н-15	Reverse isolation LG	ISOLc2	Low-Gain mode $f = fRXc2$		-7.0	-4.0	dB	_
H-16	Band to band isolation	BISc2	LNA2 :High-Gain mode LNA1:off LNA1 input \rightarrow LNA1 output f = fRXc2		-29	-26	dB	
H-17	Input return loss HG	S11Hc2	High-Gain mode f = fRXc2	7.5	9.5		dB	
H-18	Input return loss LG	S11Lc2	Low-Gain mode $f = fRXc2$	8.5	9.5		dB	
Н-19	Output return loss HG	S22Hc2	High-Gain mode f = fRXc2	8.5	9.5		dB	
Н-20	Output return loss LG	S22Lc2	Low-Gain mode $f = fRXc2$	8.5	9.5		dB	_
H-21	Gain Changing Time	TCGc2	Low \rightarrow High / High \rightarrow Low f = 1 990 MHz Gain Error < 1 dB		7	16	μs	
H-22	Band Changing Time	TCBc2	$LNA2 \rightarrow LNA1$ f = 1 990 MHz High Gain Mode Gain Error < 1 dB	_	7	16	μs	

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) • All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc3 = 2 110 MHz to 2 155 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

[•] Input/output connector & substrate loss (0.34 dB/0.34 dB) included.

B No.	Parameter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
BINO.	Falameter	Symbol	Conditions	Min	Тур	Max	Unit	NOLES
LNA1 :	AC electrical characteristics (BA	ND IV)	,					
I-1	Power Gain HG	GHc3	High-Gain mode f = fRXc3	14.6	16.1	17.8	dB	
I-2	Power Gain LG	GLc3	Low-Gain mode $f = fRXc3$	-9.0	-7.0	-5.0	dB	
I-3	Noise figure HG	NFHc3	High-Gain mode f = fRXc3		1.50	2.00	dB	
I-4	Noise figure LG	NFLc3	Low-Gain mode f = fRXc3		7.0	10.0	dB	
I-5	IIP3 +10 MHz detuning HG	IIP3H1c3	High-Gain mode f1 = fRXc3 + 10 MHz f2 = fRXc3 + 20 MHz Input 2 signals (f1, f2)	-1.5	2.5		dBm	
I-6	IIP3 –10 MHz detuning HG	IIP3H2c3	High-Gain mode f1 = fRXc3 - 10 MHz f2 = fRXc3 - 20 MHz Input 2 signals (f1, f2)	0.0	2.5		dBm	
I-7	IIP3 +10 MHz detuning LG	IIP3L1c3	Low-Gain mode f1 = fRXc3 + 10 MHz f2 = fRXc3 + 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	19	24		dBm	
I-8	IIP3 –10 MHz detuning LG	IIP3L2c3	Low-Gain mode f1 = fRXc3 - 10 MHz f2 = fRXc3 - 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	19	24		dBm	
I-9	Input P1dB	IP1dBH1c3	High-Gain mode f = fRXc3	-21	-14	_	dBm	
I-10	Input P1dB TX undesired signal input HG	IP1dBH2c3	High-Gain mode f1 = fRXc3 PRX1 = -40 dBm f2 = fRXc3 - 400 MHz PRX2 : Var. Input 2 signals (f1, f2)	-21	-14		dBm	

- Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc3 = 2 110 MHz to 2 155 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.
 - If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
 - Input/output connector & substrate loss (0.34 dB/0.34 dB) included.

B No.	Parameter	Symbol	Conditions	Refe	rence v	alues	Unit	Notes
D INU.	Faranielei	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LNA1 :	AC electrical characteristics (BAN	ND IV)		_				
I-11	IIP2	IIP2H1c3	High-Gain mode f1 = fRXc3 - 400 MHz f2 = 400 MHz Input 2 signals (f1, f2)	7	12	_	dBm	_
I-12	IIP2	IIP2H2c3	High-Gain mode f1 = fRXc3 - 400 MHz $f2 = 2 \times fRXc3 - 400$ MHz Input 2 signals (f1, f2)	9	14		dBm	_
I-13	K-factor	КНс3	High-Gain mode $f = 0$ to 6 GHz	1.5	2.0		_	_
I-14	Reverse isolation HG	ISOHc3	High-Gain mode f = fRXc3		-30	-20	dB	_
I-15	Reverse isolation LG	ISOLc3	Low-Gain mode $f = fRXc3$		-7.0	-4.0	dB	
I-16	Band to band isolation	BISc3	LNA2 : High-Gain mode LNA1: off LNA1 input \rightarrow LNA1 output f = fRXc3		-27	-24	dB	_
I-17	Input return loss HG	S11Hc3	High-Gain mode f = fRXc3	8.5	9.5		dB	
I-18	Input return loss LG	S11Lc3	Low-Gain mode $f = fRXc3$	8.5	9.5		dB	
I-19	Output return loss HG	S22Hc3	High-Gain mode f = fRXc3	8.5	9.5		dB	
I-20	Output return loss LG	S22Lc3	Low-Gain mode $f = fRXc3$	8.5	9.5		dB	
I-21	Gain Changing Time	TCGc3	$Low \rightarrow High / High \rightarrow Low$ f = 2170 MHz Gain Error < 1 dB		7	16	μs	_
I-22	Band Changing Time	TCBc3	$LNA2 \rightarrow LNA1$ f = 2170 MHz High Gain Mode Gain Error < 1 dB		7	16	μs	

- Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.85 V Notes) All parameters are specified $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc4 = 1 845 MHz to 1 880 MHz, PRX = -30 dBm, CW unless otherwise specified. • The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.
 - If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.
 - Input/output connector & substrate loss (0.32 dB/0.32 dB) included.

B No.	Parameter	Symbol	Conditions	Reference values		Unit	Notes	
D INO.	Parameter	Symbol	Conditions	Min	Тур	Max	Onit	notes
LNA1 :	AC electrical characteristics (BA	ND IX)		_	_			
J- 1	Power Gain HG	GHc4	High-Gain mode f = fRXc4	15.1	16.6	17.8	dB	_
J-2	Power Gain LG	GLc4	Low-Gain mode $f = fRXc4$	-9.0	-7.0	-5.0	dB	
J-3	Noise figure HG	NFHc4	High-Gain mode f = fRXc4	_	1.40	1.80	dB	
J-4	Noise figure LG	NFLc4	Low-Gain mode f = fRXc4	_	7.0	10.0	dB	
J-5	IIP3 +10 MHz detuning HG	IIP3H1c4	High-Gain mode f1 = $fRXc4 + 10 MHz$ f2 = $fRXc4 + 20 MHz$ Input 2 signals (f1, f2)	-1.5	2.5		dBm	
F-6	IIP3 –10 MHz detuning HG	IIP3H2c4	High-Gain mode f1 = fRXc4 - 10 MHz f2 = fRXc4 - 20 MHz Input 2 signals (f1, f2)	-0.5	2.5		dBm	
J-7	IIP3 +10 MHz detuning LG	IIP3L1c4	Low-Gain mode f1 = fRXc4 + 10 MHz f2 = fRXc4 + 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	19	24		dBm	
J-8	IIP3 –10 MHz detuning LG	IIP3L2c4	Low-Gain mode f1 = fRXc4 - 10 MHz f2 = fRXc4 - 20 MHz PRX1 = PRX2 = -10 dBm Input 2 signals (f1, f2)	19	25		dBm	
J-9	Input P1dB	IP1dBH1c4	High-Gain mode f = fRXc4	-21	-14		dBm	_
J-10	Input P1dB TX undesired signal input HG	IP1dBH2c4	High-Gain mode f1 = $fRXc4$ PRX1 = -40 dBm f2 = $fRXc4 - 95$ MHz PRX2 : Var. Input 2 signals (f1, f2)	-19	-12		dBm	

Control Pin Mode Table

Note) See parameters B No.DC-7 to B No.DC-8 in the Electrical Characteristics for control voltage retention ranges.

CNT1 (LNA select 1)	CNT2 (LNA select 2)	CNT3 (Gain control)	LNA1 (Band I,II,IV,IX)	LNA2 (Band I)	LNA3 (Band V,VIII)	Mode
High	High	High		_	_	_
		Low		—	_	—
High	Low	High	Off	Off	On	LNA3 High-Gain
		Low	Off	Off	On	LNA3 Low-Gain
Low	High	High	On	Off	Off	LNA1 High-Gain
		Low	On	Off	Off	LNA1 Low-Gain
Low	Low	High	Off	On	Off	LNA2 High-Gain
		Low	Off	On	Off	LNA2 Low-Gain

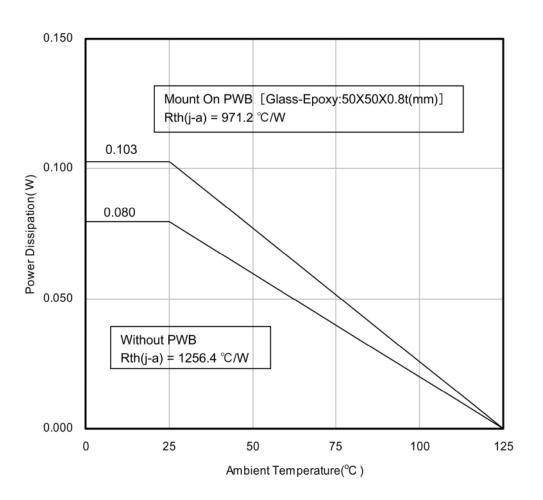
Technical Data

• I/O block circuit diagrams and pin function descriptions

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Voltage	Internal Circuit	Description
A1		(V _{cc}) (A) (GND	LNA1 RF Output (Band II)
A2	_	Refer to A1	LNA2 RF Output (Band I)
A3	_	Refer to A1	LNA3 RF Output (Band V)
A4		(A4)	CNT1 ; LNA select SW input 1
B1	2.85 V		Voltage supply (V _{CC})
B2	0.0 V		GND
В3	_	Refer to A4	CNT2 ; LNA select SW input 2
B4	_	_	N.C.

Technical Data (continued)


• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Voltage	Internal Circuit	Description
C1	0.75 V	V _{cc}	LNA1 RF Input (Band II)
C2	0.75 V	Refer to C1	LNA2 RF Input (Band I)
C3	0.75 V	Refer to C1	LNA3 RF Input (Band V)
C4	_	Refer to A4	CNT3 ; High-Gain / Low-Gain SW input

Panasonic

- Technical Data (continued)
- $P_D T_a$ diagram

Usage Notes

- Special attention and precaution in using
 - 1. This IC is intended to be used for general electronic equipment [Triple-band UMTS handset].
 - Consult our sales staff in advance for information on the following applications:
 - Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device
 - (7) Weapon
 - (8) Others : Applications of which reliability equivalent to (1) to (7) is required
 - 2. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite.
 - 3. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description (Page 5 and Page 6) for the pin configuration.
 - 4. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solderbridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
 - Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin-V_{CC} short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short).
 And, safety measures such as an installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.
 - 6. When using the LSI for new models, verify the safety including the long-term reliability for each product.
 - 7. When the application system is designed by using this LSI, be sure to confirm notes in this book.
 - Be sure to read the notes to descriptions and the usage notes in the book.
 - 8. Due to unshielded structure of this IC, under exposure of light, function and characteristic of the product cannot be guaranteed. During normal operation or even under testing condition, please ensure that IC is not exposed to light.
 - 9. Basically, chip surface is ground potential. Please design to ensure no contact between chip surface and metal shielding.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:

• Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202