
Fingerprint Scanner (GT-521Fxx) Hookup Guide




Introduction

Note: This tutorial is for the GT-521Fxx models. If you are using any of the previous models (i.e. GT-511C1R and GT-511C3), please refer to the older Fingerprint
Scanner Hookup Guide.

Have you ever wanted to add fingerprint identification to your project? SparkFun offers a fingerprint scanner from ADH Tech designed to do just that! The GT-521F32 and GT-
521F52 includes an optical sensor for reading fingerprints and a processing IC with built-in fingerprint algorithms. Here you will find information about connecting the
fingerprint scanner and how to use it with Hawley’s FPS_GT511C3 library.

Fingerprint Scanner - TTL (GT-521F32)
 SEN-14518

Fingerprint Scanner - TTL (GT-521F52)
 SEN-14585

https://www.sparkfun.com/
https://learn.sparkfun.com/tutorials/fingerprint-scanner-hookup-guide
https://www.sparkfun.com/products/14518
https://www.sparkfun.com/products/14585
https://www.sparkfun.com/products/14518
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14518
https://www.sparkfun.com/products/14585
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14585


Suggested Reading

Depending on how you are connecting to the fingerprint scanner, you may need to know the following concepts before working with one of these boards:

Hardware Overview

Features

The GT-521F32 and GT-521F52 have a lot in common with the previous models. They have the same protocol commands and packet structure. Code that was implemented
for previous models should be functionally the same. The fingerprint scanner has the ability to:

Enroll a Fingerprint
Identify a Fingerprint
Capable of 360° Recognition

However, there are a few differences in the boards. These include:

Different Board Layout
4x Mounting Holes
2x JST SH Connectors
Touch Interface

One significant difference to keep in mind when integrating the fingerprint scanner in a project is the number of fingerprints that the device can hold. The GT-521F32 costs less
but it can hold only 200 fingerprints. The GT-521F52 is slightly more expensive but it can hold 3000 fingerprints.

Technical Specs GT-521F32 / GT-521F52

CPU ARM Cortex M3 Cortex

Sensor optical

Window 16.9mm x 12.9mm

How to Solder: Through-Hole Soldering
This tutorial covers everything you need to know about through-hole soldering.

Serial Communication
Asynchronous serial communication concepts: packets, signal levels, baud rates,
UARTs and more!

Installing an Arduino Library
How do I install a custom Arduino library? It's easy!

Logic Levels
Learn the difference between 3.3V and 5V devices and logic levels.

Serial Terminal Basics
This tutorial will show you how to communicate with your serial devices using a
variety of terminal emulator applications.

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/terminal-basics


Effective Area of the Sensor 14mm x 12.5mm

Image Size 258x202 Pixels

Resolution 450 dpi

Max # of Fingerprints 200 / 3000

Matching Mode 1:1, 1:N

Size of Template 496 Bytes(template) + 2 Bytes (checksum)

Serial Communication UART (Default: 9600 baud) and USB v2.0 (Full Speed)

False Acceptance Rate (FAR) < 0.001%

False Rejection Rate (FRR) < 0.01%

Enrollment Time < 3 sec (3 fingerprints)

Identification Time <1.5

Operating Voltage 3.3V ~ 6Vdc

Operating Current < 130mA

Touch Operating Voltage 3.3Vdc

Touch Operating Current < 3mA

Touch Standby Current < μ5

The image below shows the fingerprint scanner’s optical sensing area where the device will be able to scan your fingerprint.

There is a marking next to the JST-SH connector that indicates polarity. The JST-SH connector breaks out the pins for serial UART and power. While the input voltage is
between 3.3V and 6V, the UART’s logic level is only 3.3V. You will need a logic level converter or voltage divider to safely communicate with a 5V device.

Note: Make sure that you are connecting to the correct JST connector indicated by the polarity marker and capacitors. The JST connector on the other side of the board
are not connected to the same pins for serial UART.

The GT-521F32 and GT-521F52 have the ability to sense if a finger is placed on the optical sensing area. Upon contact with the metal frame around the optical sensing area,
the ICPCK will output 3.3V (HIGH). Otherwise, the ICPCK will be 0V (LOW)

Touch State ICPCK Pin Status

Finger Initially Touching the Frame LOW => HIGH

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/14518-04OpticalSensingArea.png
https://www.sparkfun.com/products/12009
https://learn.sparkfun.com/tutorials/voltage-dividers
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/14518-04SerialPowerConnectorLabel.png
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/14518-04TouchICConnector.png


No Finger Touching LOW => LOW

Finger Touching the Frame HIGH => HIGH

Removing a Finger From the Frame HIGH => LOW

Note: If the fingerprint scanner is powered from the UART side, you will need to still provide 3.3V to power the touch interface. The GND is connected to GND plane.

Hardware Hookup
The fingerprint scanner requires a serial UART connection and power. There are a few options to connect to the sensor depending on what UART device you are using. The
easiest would be to use an FTDI but you can also use any microcontroller that has a UART.

1.) Connecting w/ a 3.3V FTDI

Option 1: Qwiic Cable

To connect the fingerprint scanner to your computer, it is recommended to connect the JST SH cable to a USB-to-serial converter. Here are the minimum required parts you
would need to get started:

Fingerprint Scanner (GT-521F32 or GT-521F52)
Qwiic Cable - Breadboard Compatible
3.3V FTDI Basic Breakout
Mini-B USB Cable

Below are the following connections you would need to make with the JST-SH connector labeled as J2:

Fingerprint Scanner [Pin #] FTDI 3.3V

UART_TX (3.3V TTL) [Pin 1] RX

UART_RX (3.3V TTL) [Pin 2] TX

GND [Pin 3] GND

Vin (3.3V~6V) [Pin 4] 3.3V

After connecting, the setup should look like the image below.

Note: The colors of the Qwiic Cable are standard for I C connections, not UART, so the colors will not match typical standards for colored cables. For example, the red
wire in this circuit connects Rx to Tx. Double check your connections before powering the scanner.

Option 2: Making a Custom Adapter

If you are using the JST SH Jumper 4 Wire Assembly instead of the Qwiic cable, it is highly recommended that you make a custom adapter by soldering to the ends of the
wire for a secure connection. This will ensure that the connection is not loose when inserting it into female header sockets of an FTDI or the RedBoard/Arduino Uno. The
cable wire is small compared to the female header socket. A small bump can mess with the serial UART or power between the fingerprint scanner and converter. This may
require you to reconnect the scanner to your computer or device. Making an adapter will also provide quick access to the small 4-pin JST-SH connector that is on the scanner.

For more information on how to make a custom adapter, please refer to the older tutorial. Remember, the pin locations are the same so the adapter can work with the current
fingerprint scanner.

MAKING A CUSTOM FPS ADAPTER

2.) Connecting w/ a 5V Arduino

Before using the Arduino’s example code, make sure that the logic levels match. If you are using a 5V Arduino, you could use a dedicated logic level converter or resistors for
voltage division. Here are the minimum parts you would need to get started:

Fingerprint Scanner (GT-521F32 or GT-521F52)
Qwiic Cable
Redboard or Arduino Uno
Mini-Breadboard
Bi-Directional Logic Level Converter or 3x 10kOhm Resistors

2

https://www.sparkfun.com/products/14518
https://www.sparkfun.com/products/14585
https://www.sparkfun.com/products/14207
https://www.sparkfun.com/products/9873
https://www.sparkfun.com/products/11301
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FPS_3V3_FTDI.jpg
https://learn.sparkfun.com/tutorials/i2c
https://www.sparkfun.com/products/10359
https://learn.sparkfun.com/tutorials/fingerprint-scanner-hookup-guide#CustomFPSAdapter
https://www.sparkfun.com/products/14518
https://www.sparkfun.com/products/14585
https://www.sparkfun.com/products/14207
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/12044
https://www.sparkfun.com/products/12009
https://www.sparkfun.com/products/11508


M/M Jumper Wires

Option 1: Dedicated Bi-Directional Logic Level Converter (LLC)

It is recommended to use a dedicated bi-directional LLC for a reliable connection if you are using a 5V Arduino microcontroller. Assuming that you have soldered the header
pins to the logic level converter, you would need to make these connections:

Fingerprint Scanner (Pin #) Logic Level Converter (Low Side) Logic Level Converter (High Side) 5V Arduino w/ Atmega328P

UART_TX (3.3V TTL) (Pin 1) LV1 HV1 RX (pin 4)

UART_RX (3.3V TTL) (Pin 2) LV4 HV4 TX (pin 5)

GND (Pin 3) GND GND GND

LV 3.3V

Vin (3.3V~6V) (Pin 4) HV 5V

Note: Make sure to connect 3.3V to the LV side to power the low side of the logic level converters.

After wiring the circuit, it should look like this:

Option 2: Voltage Division w/ 3x 10kOhm Resistors

Otherwise, you could use 3x 10kOhm resistors to divide the voltage from a 5V Arduino down to 3.3V for the fingerprint scanner (FPS) similar to the “Uni-Directional”
application circuit on our old logic level converter as shown below:

Below is the connection between the FPS, 5V Arduino, and resistors for voltage division:

Voltage Divider Fingerprint Scanner(Pin #) Voltage Divider 5V Arduino w/ Atmega328P

UART_TX (3.3V TTL) (Pin 1) RX (pin 4)

GND <-> 10kOhm <-> 10kOhm UART_RX (3.3V TTL) (Pin 2) 10kOhm TX (pin 5)

GND GND (Pin 3) GND GND

Vin (3.3V~6V) (Pin 4) 5V

Note: You can add the two 10kOhm resistors in series for 20kOhms.

After wiring the circuit up, it should look like this:

https://www.sparkfun.com/products/8431
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FPSLLCArduino.jpg
https://learn.sparkfun.com/tutorials/voltage-dividers
https://cdn.sparkfun.com/assets/b/0/e/1/0/522637c6757b7f2b228b4568.png
https://learn.sparkfun.com/tutorials/resistors#series-and-parallel-resistors


Using Demo Software w/ a FTDI
After making your connection with the 3.3V FTDI, connect the USB cable to your computer. Assuming that the FTDI drivers have been installed, make note of what COM port
on which the FTDI enumerated. On a Windows computer, I was able to view it in the device manager as shown below:

Opening and Connecting to the SDK_Demo.exe

For basic operation with the demo software, it is recommended to download the demo software development kit (SDK) that is linked in product page's documents section.
Each demo software is unique to that version of the scanner and it might not work with the other models.

To use the demo SDK on a computer:

1. Download the SDK_DEMO.exe from the product page under the “Documents” tab.
2. Unzip the folder.
3. Go to the directory that it was unzipped, which should look similar to this: …\20171129-SDK Demo Ver1.9\Release .
4. Open the SDK_DEMO.exe executable.
5. Select the COM port that the FTDI enumerated to in the Serial Port Number’s drop down menu.*
6. Select 9600 in the Baudrate’s drop down menu.
7. Click on the Open button.

*Note: The available COM ports range from "COM3" to "COM10". If your USB-to-serial converter enumerates to a number higher than that, you would need to go to your
computer's device manager to force it to a lower COM port number.

The image below shows how the SDK_DEMO.exe looks like before connecting:

 

Once the demo SDK has been opened, it will look like this:

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FPSVoltageDividerArduino.jpg
https://learn.sparkfun.com/tutorials/how-to-install-ftdi-drivers
https://cdn.sparkfun.com/assets/learn_tutorials/6/5/4/FTDI_DeviceManager.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/OpenDirectoryFingerprintScannerSDK.png


 

The FirmwareVersion and DeviceSN might be different depending the serial number that the manufacturer assigned. After connecting the fingerprint scanner to the FTDI, I
was able to utilize all of the features as stated in the datasheet. The features in the demo software are based on the protocol commands. We will go over two features that are
frequently used in this section. If you are interested, feel free to experiment and test the other features.

Enrolling

To enroll a fingerprint to the module, you would need to enroll your finger three times for each ID before the scanner can save it as a template. The white LED will light up to
begin reading your fingerprint:

To enroll a fingerprint:

1. Select an ID that has no fingerprint template stored by adjusting the number in the ID: field. For this example, we will assume that there is nothing in template “0” .
2. Press the Enroll button. The SDK_Demo.exe will respond in the Result: output by requesting “to input finger1!”
3. Place a finger on the FPS. The output will state that it is “Processing Fingerprint…”
4. Remove your finger when it asks for “to input finger2!”
5. Place and remove your finger until the FPS has successfully read your fingerprint 3x.
6. A notification will be provided when you have enrolled your fingerprint successfully. For template 0, it will respond by saying: “Enroll Ok (ID=0)!” At this point, the

fingerprint scanner’s white LED will turn off.

If the scanner is not able to recognize a unique fingerprint or detect the finger that was placed on the scanner, it will stop the enrollment and respond with a “timeout!” . If the
scanner is not able to recognize the fingerprint at anytime during the enrollment, you will receive a response: “The enrollment is failed!” Make sure that there is sufficient
contact with the scanner and that the finger is placed in the same position during enrollment.

The template will have a number associated with the fingerprint scanner and it will be saved in its local database.

Identifying

After enrolling, you will want to test to see if the fingerprint can be identified. To test and verify, press on the Identify(1:N). The white LED will being to light up and a request to
“Input finger!” The SDK_DEMO.exe will check through the local database to see if it can recognize fingerprint against the saved fingerprint templates. If successful, it will
respond with an ID that matches and the time it took to identify: “ID=0: 546ms;” .

Example Code for Arduino

Using SDK_Demo.exe w/ FPS_Serial_Passthrough.ino

Testing this with a Arduino Uno based microcontroller (i.e RedBoard Programmed w/ Arduino or Arduino Uno ) and the serial passthrough code, I was able to connect to the
SDK demo software provided on the fingerprint scanner’s product page. This might be another alternative if you do not have a 3.3V FTDI to connect to your fingerprint
scanner.

To use the SDK demo with an Arduino microcontroller connected to the fingerprint scanner, you need to:

1. Build a circuit between the Arduino and scanner using logic level translation. This is assuming that you are using a 5V Arduino.
2. In the Arduion IDE, upload the FPS_Serial_Passthrough.ino sketch to your Arduino.
3. In the SDK_demo.exe labeled Serial Port Number , select a COM port that is lower than COM10 (COM3 should be the lowest that you can use).
4. Select a baud rate of 9600 .
5. After uploading the serial passthrough code or powering the Arduino for the first time during the session, you will need to reset the Arduino. Press the RESET button.
6. After the Arduino initializes, press on the “Open” button in the SDK

Note: The available COM ports range from "COM3" to "COM10". If your USB-to-serial converter enumerates to a number higher than that, you would need to go to your
computer's device manager to force it to a lower COM port number.

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FingerprintScannerConnectSDK.png
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FPSQwiicFTDIEnroll_1.jpg
https://www.sparkfun.com/products/13975
https://www.sparkfun.com/products/11021
https://github.com/sparkfun/Fingerprint_Scanner-TTL/blob/master/FPS_GT511C3/Examples/FPS_Serial_Passthrough/FPS_Serial_Passthrough.ino


The image below shows the SDK_Demo before it is opened with an Arduino on COM7 and a baud of 9600 :

Hawley’s FPS_GT511C3 Library for Arduino

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is your first time using Arduino, please review our tutorial on
installing the Arduino IDE. If you have not previously installed an Arduino library, please check out our installation guide.

To create a standalone system that can read fingerprints without the aid of a computer, you will need to replicate what the demo software does in Arduino code. Luckily there
is a fingerprint scanner Arduino library written by jhawley. The code does most of the leg work for you and handles a lot of the complicated protocol commands. You can
download it directly using the link below or find the source files on the GitHub repo.

FPS_GT511C3 ARDUINO LIBRARY

This library is limited in functionality compared to the SDK_Demo.exe, but it gets the job done. If you look at the comments in the FPS_GT511C3’s library, certain functions
were not implemented due to the Atmega328P’s memory restrictions. Certain functions were also not needed when it was originally written. The FPS_GT511C3 library and
example code works with the GT511C3 and GT511C1R models.

The library has three examples. Each one performs a different task with the FPS:

1. Blink the white LED.
2. Enroll a fingerprint.
3. Attempt to identify the fingerprint against the local database.

Example 1: Basic Serial Test w/ FPS_Blink.ino

The FPS_Blink.ino sketch is a basic test to see if the Arduino is able to talk with the fingerprint scanner through the serial UART. As a basic sanity check, it is recommended to
test this code to make sure that your connections are correct and the scanner is able to send/receive commands. The code sets up a the Arduino’s hardware serial UART for
debugging and tells the scanner to send serial debug messages. The code also initializes the connection with the fingerprint scanner.

Once the setup is complete, the Arduino will tell the fingerprint scanner to toggle the white LED. By opening the serial monitor at 9600 baud, you should see this output:

FPS - Open 
FPS - SEND: "55 AA 01 00 00 00 00 00 01 00 01 01" 
FPS - RECV: "55 AA 01 00 00 00 00 00 30 00 30 01" 
 
FPS - LED on 
FPS - SEND: "55 AA 01 00 01 00 00 00 12 00 13 01" 
FPS - RECV: "55 AA 01 00 00 00 00 00 30 00 30 01" 
 
FPS - LED off 
FPS - SEND: "55 AA 01 00 00 00 00 00 12 00 12 01" 
FPS - RECV: "55 AA 01 00 00 00 00 00 30 00 30 01" 

The code will repeat and toggle the LED while printing to the serial monitor.

Example 2: Enrolling w/ FPS_Enroll.ino

The FPS_Enroll.ino is used for enrolling a fingerprint each time the Arduino is reset. The fingerprint will save in a template within the scanner’s local database. The code will
initialize like the FPS_Blink.ino sketch. Instead of toggling the LED, the LED will remain on to scan a fingerprint. Before the end of the setup() function, it will jump to the
Enroll() function. The Enroll() function will look for an empty template ID and begin enrolling your fingerprint.

Below is what to expect in the serial monitor when enrolling a finger successfully:

    Press finger to Enroll #3 
    Remove finger 
    Press same finger again 
    Remove finger 
    Press same finger yet again 
    Remove finger 
    Enrolling Successful 

The scanner will reject a fingerprint if the scanner is not able to recognize your finger at anytime during the enrollment process. If your finger is not placed in the same position
like the other scans, the template will not be saved. When this happens, you will need to restart the enrollment process.

Below is what to expect when the scanner fails if the first scan does not match the second scan.

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FingerprintScannerConnectSDKArduinoSoftwareSerial.png
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/Fingerprint_Scanner-TTL
https://github.com/sparkfun/Fingerprint_Scanner-TTL/archive/master.zip
https://github.com/sparkfun/Fingerprint_Scanner-TTL/blob/master/FPS_GT511C3/Examples/FPS_Blink/FPS_Blink.ino
https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://github.com/sparkfun/Fingerprint_Scanner-TTL/blob/master/FPS_GT511C3/Examples/FPS_Enroll/FPS_Enroll.ino


    Press finger to Enroll #4 
    Remove finger 
    Press same finger again 
    Failed to capture second finger 

Try enrolling a fingerprint by uploading the code and following the serial monitor’s output. To enroll more than one fingerprint, just reset the Arduino.

Example 3: Identifying w/ FPS_IDFinger.ino

The FPS_IDFinger.ino sketch checks to see if a finger is on the scanner. Once a finger has been placed on the scanner, it checks the fingerprint against any of the fingerprints
saved in the local database. You will be notified through the serial monitor if the fingerprint matches an ID, if the fingerprint is not found, or when it fails to read the fingerprint.
After checking and lifting your finger, it will request for another fingerprint to check.

Below is what you would expect when using this example:

Verified ID:0 
Finger not found 
Finger not found 
Verified ID:0 
Verified ID:0 
Please press finger 
Please press finger 
Please press finger 
Verified ID:2 
Please press finger 
Verified ID:2 
Please press finger 

Looking at the output, “Finger not found” usually means that: the fingerprint does not match any of the template IDs or when the the scanner is not able to clearly read the
fingerprint. If the finger has been enrolled, you would need to make sure that you place the fingerprint on the scanner just like when you scanned the finger.

Depending on what model you are using, make sure to change number of IDs in the condition statement. By default, the code uses 200 since the GT-511C3 can hold up to
200 fingerprint templates. If you are using the GT-511C1R, you would need to change the number to 20. Try testing the scanner with the code to see if the scanner is able to
read the fingerprints that were enrolled.

Software Serial w/ Other Microcontrollers

The demo code was originally designed for the ATmega328P on the Arduino Uno. If you were using it with ATmega2560 (i.e. Arduino Mega 2560) or ATmega32U4 (i.e.
Arduino Leonardo, Pro Micro 5V/16MHz, Pro Micro 3.3V/8Mhz, FioV3, etc.), you would need to re-configure the software serial pin definitions and adjust the connections. Not
all the pins can support change interrupts for a serial Rx pin depending on what Arduino microcontroller is used. For more information, try looking at the reference language
for the Software Serial library.

To use the FPS on an Arduino Mega 2560 or Arduino Leonardo, you would just need to comment out the line where it says:

SoftwareSerial fps(4, 5); // (Arduino SS_RX = pin 4, Arduino SS_TX = pin 5) 

and uncomment out the line here:

SoftwareSerial fps(10, 11); // (Arduino SS_RX = pin 10, Arduino SS_TX = pin 11) 

Once you change the code, make sure to rewire your connections to follow the pin definitions.

Caution: The FPS_GT511C3 library may not work for all microcontrollers using the Arduino IDE. As you move away from the ATmega328P family, you may need to
modify the code or port the library over to get it working. It would be easier and faster to just have an Atmega328P bootloaded with Arduino to handle the FPS code. To
use the fingerprint scanner, you could just write additional code to have the ATmega328P send serial data to the other microcontroller.

Firmware Overview
If you are interested, this section goes just a little further by looking briefly at the command protocol. We will be taking a quick look at the fingerprint scanner’s blink example
with an Arduino and how the command protocol functions based on the manual.

Verifying the Checksum Value

To verify the check sum for the command packet (command) or response packet (acknowledge), you would add the bytes of the command start codes, device id, parameter,
and command/response. Looking at the Arduino blink example, the serial monitor outputs:

FPS - Open 
FPS - SEND: "55 AA 01 00 00 00 00 00 01 00 01 01" 
FPS - RECV: "55 AA 01 00 00 00 00 00 30 00 30 01" 
 
FPS - LED on 
FPS - SEND: "55 AA 01 00 01 00 00 00 12 00 13 01" 
FPS - RECV: "55 AA 01 00 00 00 00 00 30 00 30 01" 
 
FPS - LED off 
FPS - SEND: "55 AA 01 00 00 00 00 00 12 00 12 01" 
FPS - RECV: "55 AA 01 00 00 00 00 00 30 00 30 01" 

The example displays the packet structure as a multi-byte item represented as little endian. Breaking down the LED command to turn the LED OFF in hex, it is:

https://github.com/sparkfun/Fingerprint_Scanner-TTL/blob/master/FPS_GT511C3/Examples/FPS_IDFinger/FPS_IDFinger.ino
https://github.com/bboyho/Fingerprint_Scanner-TTL/blob/master/FPS_GT511C3/Examples/FPS_IDFinger/FPS_IDFinger.ino#L82
https://www.arduino.cc/en/Reference/SoftwareSerial
https://github.com/sparkfun/Fingerprint_Scanner-TTL/blob/master/FPS_GT511C3/Examples/FPS_Blink/FPS_Blink.ino
https://learn.sparkfun.com/tutorials/binary#counting-and-converting


55 AA 01 00 00 00 00 00 12 00 12 01 
, where Command Start code1 = 0x55 
        Command Start code2 = 0xAA 
        Device ID = 0x00 01 
        Input parameter = 0x00 00 00 00 
        Command Code = 0x00 12 

By adding the hex values with a programmer’s calculator as stated in the datasheet:

OFFSET[0] + OFFSET[1] + OFFSET[2] + OFFSET[3] + OFFSET[4] + OFFSET[5] + OFFSET[6] + OFFSET[7] + OFFSET[8] + OFFSET[9] = 0x55 +0xAA + 0x01 + 0x00 +
0x00 + 0x00 + 0x00 + 0x00 + 0x12 + 0x00

, we are able to get the same output result as the command packet’s check sum:

Checksum = 0x01 12 

Since the check sum is read as little endian, the output reads the checksum as “12 01”.

FPS Experiments
Underneath the enclosure, the scanner uses LEDs and tiny camera to read a fingerprint. On the back, there is a processor that will try to read whatever is placed on top of the
scanner’s enclosure.

Hand Drawn “Fingerprint”

I was interested in seeing if the fingerprint scanner was able to identify any other items placed on the fingerprint scanner. I tested using a few drawings on a sticky note:

I drew fiducials to align the fingerprint scanner’s with the drawing in the image below. This ensured that the fingerprint was placed in the same position for each scan.

I first drew a pattern in test #1 and test #2 . Test #1 failed to enroll properly, since it did not have a lot of details. I continued to test the drawing in test #1 to see when the
scanner would accept the drawing. Test #2 was successful in enrolling and identifying by adding a little bit more detail. In test #3, I drew a bit more, but the fingerprint scanner
was unable to recognize the drawing. The drawing in test #4 was enough for the scanner to recognize by adding lines and scribbles similar to the unique patterns of a
person’s fingerprint. In test #5, I was interested in seeing if the scanner was able to recognize words as a fingerprint. While the fingerprint scanner was able to recognize that
there was a “finger” pressed on the scanner, it failed to complete the enrollment process. The words probably did not create enough of a pattern for the scanner to accept.

I was also interested in how each of the images would look like after it was scanned. Luckily, the SDK_Demo.exe had a feature to get the image and save as a bitmap. The
“Get Image” button requires a valid fingerprint press before the device begins scanning. The “Get Raw Image” immediately scans whatever is on the scanner even if it is not a
valid fingerprint pattern. After clicking on the “Save Image To File”, a 240x216 sized bitmap image was taken from the GT-511C1R’s optical sensing area and saved to my
computer. Below are images of the tests after saving the patterns:

Test #1 (FAIL) Test #2 (PASS) Test #3 (FAIL) Test #4 (PASS) Test #5 (F

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/FingerprintScribbleDrawing.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GT-521FxxFingerprintScribbleScan.jpg


More Failed Attempts

I tried using the silkscreen and traces of the SparkFun EL Sequencer to see if the scanner was able to enroll. Unfortunately, it was not able to accept the board as a
fingerprint. The board seem to be too far away causing the image to be dimly lit and the silkscreen was not sufficient enough to pass as a pattern. Below is an image taken of
one of the SparkFun EL Sequencer’s silkscreen that failed to enroll:

 

As a final test, scanner was used with the palm of a hand. While it was able to enroll once, the scanner was not able to recognize it a majority of the time. It was not easy to
place the fingerprint scanner on the same location of the palm. The scanner was only able to recognize the palm once. It’s possible that the ridges on the palm of a hand and
the amount of pressure that was placed on the scanner was not sufficient to enough.

Troubleshooting
Listed below are frequently asked questions and tech support tips on troubleshooting common issues related to the fingerprint scanner.

1.) I am not sure if the fingerprint scanner is responding to any of the commands with my Arduino. What can I do?

Make sure that there are no loose connections. If you are using the JST SH jumper 4 wire assembly, the cable’s wire is relatively thin compared to the Arduino’s socket. A
small bump can break the connection requiring you to power cycle the fingerprint scanner or reset the Arduino.

Also, make sure that you are connecting the fingerprint scanner to your microcontroller correctly based on the Arduino model and defined software serial pins.

2.) Scanner not recognizing your fingers when enrolling?

There can be issues trying to enroll when using the SDK_Demo.exe or Arduino example code. This is usually due to fingers being dry and not having good contact on the
scanner. The finger has to have the same pressure applied and be placed in the same position for all three enrollments. The timing of your finger on the scanner is a little
tricky too. A tech support representative had to try a few times before it was able to enroll a finger. This is common with any fingerprint scanner like the one that is on a
smartphone.

If you see these errors, you probably did not place your finger on the fingerprint scanner sufficiently for each enrollment:

Bad finger! 

or

Failed to capture second finger 

or

The enrollment is failed! 

If you are using an FTDI, try to follow the directions for enrolling with a FTDI again. You may need to close out the program and unplugging/replugging the FTDI before re-
enrolling. If you are using an Arduino, try the enrollment process again by placing your finger on the scanner, resetting the Arduino, and following the directions in the serial
monitor.

3.) Scanner not recognizing your fingers when verifying?

If you are trying to verify a fingerprint, make sure to place the finger on the scanner just like when it was enrolled. The same conditions for scanning a fingerprint apply as
explained above for enrolling.

4.) Will the GT-521F32 / GT-521F52 fingerprint scanner work with the FPS_GT511C3 library?

Yes, it will. It has been tested. Each of the fingerprint scanners use the same command protocols so the Arduino example code can be used for any of the scanners. However,
the library will not be compatible if you using a different scanner that is not manufactured by ADH-Tech.

5.) Can I use an Arduino Due?

https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GetRawImageTest1.bmp
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GetRawImageTest2.bmp
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GetRawImageTest3.bmp
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GetRawImageTest4.bmp
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GetRawImageTest5.bmp
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GetRawImageSparkFun.bmp
https://www.sparkfun.com/products/10359


Unfortunately, the fingerprint scanner’s Arduino example code for the does not work with the Arduino Due. You would need to modify the code and use it with the hardware
serial UARTs because the Arduino Due does not support software serial. This old forum post will explain why there are compilation errors with the example code using the
Arduino Due board definition => Arduino.cc Forums: SoftwareSerial for Arduino Due.

6.) What are the dimensions of the fingerprint scanner?

The dimensions are listed on page 8 of the datasheet.

7.) I soldered to the back of the fingerprint scanner and none of the Arduino examples work.

Those pins are broken out if you wanted to connect the fingerprint scanner directly to a USB port. The USB data lines are different from a serial UART protocol. If you are
using the Arduino examples for your project, it is recommended to connect to the JST SH connector. If you are interested in plugging the scanner directly to your computer’s
COM port, feel free to test it out and experiment. It has been tested to work with the previous models.

Fingerprint Scanner USB Pinout

Surprise! You found the extra section on how to connect to the USB pins! The connection to the USB was not included in the beginning of the tutorial because the main
objective was to use it in an embedded project with an Arduino microcontroller. To connect the fingerprint scanner with the demo software and your computer’s USB port, you
can connect the pads on the back of the board labeled J1 directly to the USB port of your computer. The image and table below shows the pinout:

Fingerprint Scanner USB Port

Shield (right most pin) USB Shield (not necessary if using a USB breakout board). Tied to GND.

GND GND (Standard USB Black Wire)

D+ D+ (Standard USB White Wire)

D- D- (Standard USB Green Wire)

Vcc (square pad) 5V (Standard USB Red Wire)

For more information about soldering to the USB pads, check out the instructions provided in the the older tutorial. The directions are essentially the same.

CONNECTING TO THE FINGERPRINT SCANNER'S USB DATA PINS

Resources and Going Further
Now that you’ve successfully got your fingerprint scanner up and running, it’s time to incorporate it into your own project!

For more information, check out the resources below :

GT-521F32/GT-521F52
Datasheet
Programming Guide
SDK Demo Software

GitHub Repository for the FPS’s Arduino Example Code
SparkFun Product Showcase: GT-521Fx2 Fingerprint Scanner

Shawn’s Product Showcase Gist Demo Code

Old Tutorials and Project Examples

For more tutorials and project ideas using the older models of ADH-Tech’s fingerprint scanner, check below:

Arduino

Instructables.com - DIY Fingerprint Scanning Garage Door Opener
Starting Electronics - GT-511C3 Fingerprint Scanner Hardware, Wiring and Connector Numbering
Homautomation - Playing with finger print scanner (FPS) on arduino
SparkFun’s Fellowship of the Things! - Internet of Things Ep 1: AirLock Demo Project w/ 3 Factor Authentication and GitHub Repo for IoT 3 Factor Verification

Raspberry Pi

There’s a Raspberry Pi Python Library for this fingerprint scanner if you look at the post by user jeanmachuca in the Pi forums =>
https://www.raspberrypi.org/forums/viewtopic.php?f=61&t=74178 .

http://forum.arduino.cc/index.php?topic=142902.0
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GT-521FX2_datasheet_V1.1__003_.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/14518-03_FPS_USB.png
https://learn.sparkfun.com/tutorials/fingerprint-scanner-hookup-guide#fps_usb_hookup
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GT-521FX2_datasheet_V1.1__003_.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/GT-521F52_Programming_guide_V10_20161001.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/7/2/3/20171129-SDK_Demo_Ver1.9.zip
https://github.com/sparkfun/Fingerprint_Scanner-TTL
https://youtu.be/PPNoO5uaUhM
https://gist.github.com/ShawnHymel/6598b93dcaf6346cd1d0c1bf57388ce5
http://www.instructables.com/id/DIY-Fingerprint-Scanning-Garage-Door-Opener/
http://startingelectronics.org/articles/GT-511C3-fingerprint-scanner-hardware/
http://www.homautomation.org/2014/10/11/playing-with-finger-print-scanner-fps-on-arduino/
https://www.youtube.com/watch?v=UJPPSyxWGGg&feature=youtu.be&t=3m56s
https://github.com/sparkfun/IoT_Airlock/blob/master/Arduino/Three_step_varification_code/Three_step_varification_sensor_code.ino
https://www.raspberrypi.org/forums/viewtopic.php?f=61&t=74178


There appears to be an article that uses the GT-511C1R with a Raspberry Pi as a server and SQLite [ FingerScanner: Embedding a Fingerprint Scanner in a Raspberry Pi ].
Based on this information, it’s possible to have remote management of a database on multiple fingerprint scanners from one server.

Node.js

There’s an example in Node.js with an API. I have not tested this feature before but try looking at this GitHub repository => https://github.com/the-AjK/GT-511C3 .

BeagleBone Black

There’s a BeagleBone Black Python Library by user JamesMarcogliese’s capstone design team located here => https://github.com/JamesMarcogliese/Fingerprint_Scanner-
TTL .

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801596/
https://github.com/the-AjK/GT-511C3
https://github.com/JamesMarcogliese/Fingerprint_Scanner-TTL



