TFA9810 # Stereo full-bridge audio amplifier 2 x 12 W Rev. 03 — 20 February 2008 **Product data sheet** ### 1. General description The TFA9810 is a two-channel power comparator for high-efficiency class D audio amplifier systems. It contains two full-bridge Bridge-Tied Load (BTL) power stages, drive logic, protection control logic and full differential input comparators. By using this power comparator a compact closed-loop self-oscillating digital amplifier system or open-loop system can be built. The TFA9810 does not require a heat sink and operates using an asymmetrical supply voltage. #### 2. Features - Stereo full-bridge power comparator for class D audio amplifier applications - No external heat sink required - Operating voltage range: asymmetrical from 8 V to 20 V - Thermally protected - Zero dead-time switching - Current-limiting (no audible interruptions) ### 3. Applications - Self-oscillating or open-loop class D audio amplifier applications - Flat-panel television sets - Flat-panel monitors - Multimedia systems - Wireless speakers - High-end CRT television sets ### 4. Quick reference data Table 1. Quick reference data T_{amb} = 25 °C; V_P = 12 V; f_{osc} = 550 kHz; <u>Figure 33</u> unless otherwise specified | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |------------------|----------------------------|---|-----|-----|-----|------| | V_P | supply voltage | $V_P = V_{DDPx} - V_{SSPx}$ | 8 | 12 | 20 | V | | l _{off} | off-state current | off mode | - | 110 | 200 | μΑ | | I_q | quiescent current | with load, filter and snubbers connected | - | 35 | 45 | mA | | η_{po} | output power
efficiency | output power 2 x 9 W into 8 Ω ; $P_0 = P_{O(nom)}$ | 87 | 89 | - | % | ### Audio amplifier 2 x 12 W **Table 1.** Quick reference data ...continued $T_{amb} = 25 \,^{\circ}C$; $V_P = 12 \, V$; $f_{osc} = 550 \, \text{kHz}$; Figure 33 unless otherwise specified | Symbol | Parameter | Condition | Min | Тур | Max | Unit | |---------------------|------------------|---|-----|-----|-----|------| | P _{o(RMS)} | RMS output power | $R_L = 8 \ \Omega; \ V_P = 12 \ V;$
THD = 10 %; Two channel driven; no heat sink required. | - | 9.5 | - | W | | P_0 | output power | $V_P = 12 \text{ V}; R_L = 8 \Omega$ | - | - | - | - | | | | THD = 10 % | 8.5 | 9.5 | - | W | | | | THD = 1 % | 6.5 | 7.5 | - | W | | | | V_P = 14 V; R_L = 8 Ω ;
THD = 10 %; thermally limited | - | 15 | - | W | | | | V_P = 16 V; R_L = 8 Ω ;
THD = 10 %; thermally limited | - | 15 | - | W | | | | V_P = 12 V; R_L = 6 Ω ;
THD = 10 %; thermally limited | - | 12 | - | W | | | | V_P = 12 V; R_L = 4 Ω ;
THD = 10 %; thermally limited | - | 15 | - | W | # 5. Ordering information ### Table 2. Ordering information | Type number | Package | Package | | | | | | |-------------|---------|--|----------|--|--|--|--| | | Name | Description | Version | | | | | | TFA9810T | SO32 | SO32: plastic small outline package; 32 leads; body width 7.5 mm | SOT287-1 | | | | | Audio amplifier 2 x 12 W # 6. Block diagram Audio amplifier 2 x 12 W ## 7. Pinning information ### 7.1 Pinning The SO32 package has four corner leads. These leads (1, 16, 17, and 32) are internally connected to the die pad and must be connected to V_{SSA} in the application. Together with the applied copper area on the Printed Circuit Board (PCB) these leads determine the ambient temperature, which affects the thermal resistance of the junction. ### 7.2 Pin description Table 3. Pin description | SymbolPinDescriptionVSSD(HW)1, 16, 17, 32Negative digital supply voltage and handle wafer 32IN1P2Positive input comparator channel 1IN1N3Negative input comparator channel 1VDDA14Positive analog supply voltage channel 1VSSA15Negative analog supply voltage channel 1SO/OL6SO/OL input enables self-oscillating / open-loop configurationENABLE7Enable input to switch between SLEEP and OPERATINGCDELAY8CDELAY input determines the switch on/off timingn.c.9Not connectedDIAG10Diagnostic output; open drainTEST11Test signal input; for testing purposes onlyVSSA212Negative analog supply voltage channel 2VDDA213Positive analog supply voltage channel 2 | | | | |---|----------------------|-----|--| | IN1P 2 Positive input comparator channel 1 IN1N 3 Negative input comparator channel 1 V _{DDA1} 4 Positive analog supply voltage channel 1 V _{SSA1} 5 Negative analog supply voltage channel 1 SO/OL 6 SO/OL input enables self-oscillating / open-loop configuration ENABLE 7 Enable input to switch between SLEEP and OPERATING CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | Symbol | Pin | Description | | IN1N 3 Negative input comparator channel 1 V _{DDA1} 4 Positive analog supply voltage channel 1 V _{SSA1} 5 Negative analog supply voltage channel 1 SO/OL 6 SO/OL input enables self-oscillating / open-loop configuration ENABLE 7 Enable input to switch between SLEEP and OPERATING CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | $V_{\text{SSD(HW)}}$ | | Negative digital supply voltage and handle wafer | | V _{DDA1} 4 Positive analog supply voltage channel 1 V _{SSA1} 5 Negative analog supply voltage channel 1 SO/OL 6 SO/OL input enables self-oscillating / open-loop configuration ENABLE 7 Enable input to switch between SLEEP and OPERATING CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | IN1P | 2 | Positive input comparator channel 1 | | V _{SSA1} 5 Negative analog supply voltage channel 1 SO/OL 6 SO/OL input enables self-oscillating / open-loop configuration ENABLE 7 Enable input to switch between SLEEP and OPERATING CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | IN1N | 3 | Negative input comparator channel 1 | | SO/OL 6 SO/OL input enables self-oscillating / open-loop configuration ENABLE 7 Enable input to switch between SLEEP and OPERATING CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | V_{DDA1} | 4 | Positive analog supply voltage channel 1 | | ENABLE 7 Enable input to switch between SLEEP and OPERATING CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | V_{SSA1} | 5 | Negative analog supply voltage channel 1 | | CDELAY 8 CDELAY input determines the switch on/off timing n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | SO/OL | 6 | SO/OL input enables self-oscillating / open-loop configuration | | n.c. 9 Not connected DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | ENABLE | 7 | Enable input to switch between SLEEP and OPERATING | | DIAG 10 Diagnostic output; open drain TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | CDELAY | 8 | CDELAY input determines the switch on/off timing | | TEST 11 Test signal input; for testing purposes only V _{SSA2} 12 Negative analog supply voltage channel 2 | n.c. | 9 | Not connected | | V _{SSA2} 12 Negative analog supply voltage channel 2 | DIAG | 10 | Diagnostic output; open drain | | 334 - 4 4 3 3 4 1 7 4 3 4 4 3 | TEST | 11 | Test signal input; for testing purposes only | | V _{DDA2} 13 Positive analog supply voltage channel 2 | V_{SSA2} | 12 | Negative analog supply voltage channel 2 | | | V_{DDA2} | 13 | Positive analog supply voltage channel 2 | Audio amplifier 2 x 12 W Table 3. Pin description ...continued | | - | | |-------------------|-----|---| | Symbol | Pin | Description | | IN2N | 14 | Negative input comparator channel 2 | | IN2P | 15 | Positive input comparator channel 2 | | STAB2 | 18 | Decoupling of internal 11 V regulator for channel 2 drivers | | V _{SSP2} | 19 | Negative power-supply voltage channel 2 | | BOOT2N | 20 | Bootstrap high-side driver negative output channel 2 | | OUT2N | 21 | Negative output channel 2 | | BOOT2P | 22 | Bootstrap high-side driver positive output channel 2 | | OUT2P | 23 | Positive output channel 2 | | V_{DDP2} | 24 | Positive supply voltage power channel 2 | | V_{DDP1} | 25 | Positive power supply voltage channel 1 | | OUT1P | 26 | Positive output channel 1 | | BOOT1P | 27 | Bootstrap high-side driver positive output channel 1 | | OUT1N | 28 | Negative output channel 1 | | BOOT1N | 29 | Bootstrap high-side driver negative output channel 1 | | V _{SSP1} | 30 | Negative supply voltage power channel 1 | | STAB1 | 31 | Decoupling of internal 11 V regulator for channel 1 drivers | | | | | ### 8. Functional description #### 8.1 General The TFA9810 is a dual-switching power comparator. It is the main building block for a stereo high-efficiency Class D audio power amplifier system. It contains two full-bridge BTL power stages, drive logic, protection-control logic and full differential input comparators and references (see Figure 1). By using this power comparator a compact closed-loop self-oscillating digital amplifier system or open-loop system can be built. A second-order low-pass filter converts the Pulse Width Modulation (PWM) output signal into an analog audio signal across the speaker. ### 8.2 Interfacing The pins ENABLE and SO/OL control the operating mode of the TFA9810. Both the ENABLE and the SO/OL pins refer to $V_{SSD(HW)}$. When the SO/OL pin is connected to V_{SSA} the TFA9810 is in self-oscillating mode: when the SO/OL pin is floating the TFA9810 is in open-loop mode. The TEST pin needs to be connected to V_{DDA} in both situations. Table 4. SO/OL connections | Interfacing | | | |----------------------|------------------|--| | SO/OL connected to | Configuration | | | V _{SSD(HW)} | Self-oscillating | | | Open | Open-loop | | The device has two modes: SLEEP and OPERATING. #### Audio amplifier 2 x 12 W In SLEEP mode the TFA9810 is not biased and has a very low supply current. When the TFA9810 is set to OPERATING mode the device is started via the start-up sequence, which provides a pop-free start-up behavior. After start-up the reference voltages STAB are present and the outputs start switching. Table 5. Start-up | Interfacing | | |----------------|-----------| | ENABLE [V] | Mode | | ENABLE < 0.8 V | SLEEP | | ENABLE > 3 V | OPERATING | ### 8.3 Input comparators The input stages have a differential input and are optimized for low noise and low offset. This results in maximum flexibility in the application. #### 8.3.1 Operating in self-oscillating configuration The inputs (IN1P, IN1N, IN2P, IN2N) of the comparators are internally set to a voltage level of $0.5V_P$, but only during the start-up sequence. In operating mode the inputs are high-ohmic. #### 8.3.2 Operating in open-loop configuration No internal voltages are applied to the inputs. The input pins (IN1P, IN1N, IN2P, IN2N) are pulled down to V_{SSA} level by internal resistors. ### 8.4 Diagnostic The DIAG output is an open-drain output. The maximum current is 2 mA. Whenever one of the protections is triggered the DIAG output is activated low. The DIAG output refers to $V_{\rm SSD}$. #### 8.5 Protections Overtemperature, overcurrent, overvoltage, undervoltage, overdissipation sensors, and window protection are included in the TFA9810. When one of these sensors exceeds its threshold level either the output power stage is switched off and the outputs (OUT1N, OUT1P, OUT2N, OUT2P) become floating, or the TFA9810 shuts down and starts up immediately. #### • OverTemperature Protection (OTP) If the junction temperature (T_j) exceeds a threshold level of about 150 °C then the outputs become floating. The device will start switching again after 5 μ s and when the temperature is below 150 °C. This is thermal limitation without audible interruptions. #### OverCurrent Protection (OCP) If the output current exceeds the maximum output current threshold level the output becomes floating. The device will start switching again after 5 μ s. This is current limitation without audible interruptions. ### Audio amplifier 2 x 12 W #### OverVoltage Protection (OVP) When the supply voltage applied to the TFA9810 exceeds the maximum supply voltage threshold level the device will shut down. The device will restart when the supply voltage is within the operating range. #### • UnderVoltage Protection (UVP) When the supply voltage applied to the TFA9810 falls below the minimum supply voltage threshold level the device will shut down. The device will restart when the supply voltage is within the operating range. #### • OverDissipation Protection (ODP) The ODP in the TFA9810 is a combination of two protections. Exceeding a temperature threshold level of 135 °C an internal pre-warning is generated. When an overcurrent is detected during the pre-warning the device will shut down. When the ENABLE pin is high the TFA9810 will restart automatically. The restart sequence (switch-off \rightarrow switch-on) will take 200 ms to 500 ms. ### Window Protection (WP) During start-up, if one of the outputs is shorted to V_{SS} or V_{DD} the device will not start. This is an effective measure to protect the device against shorts between the outputs (before the filter) and the ground or supply lines. The supply must be switched off prior to removing any short. The WP protects the device against failure during board assembly. Table 6. Overview protections | Protections | | | | | | |-------------|--|------|----------|--|--| | Symbol | Condition | DIAG | Outputs | Recovering | | | OTP | T _j > 150 °C | LOW | Floating | Automatic, after 5 μs and T $_j$ < 150 $^{\circ}C$ | | | OCP | $I_{O} > I_{ORM}$ | LOW | Floating | Automatic, after 5 μ s and I _O < I _{ORM} | | | OVP | V _P > 20 V | LOW | Floating | Restart (switch-off \rightarrow switch-on when V_P < 20 V) | | | UVP | V _P < 8 V | LOW | Floating | Restart (switch-off \rightarrow switch-on when $V_P > 8 \text{ V}$) | | | ODP | $T_j > 135$ °C and $I_O > I_{ORM}$ | LOW | Floating | Restart (switch-off \rightarrow switch-on when $T_j < 135$ °C or $I_O < I_{ORM}$) | | | WP | OUTX > V_{DDA} - 1 V or OUTX < V_{SSA} + 1 V | LOW | | | | Audio amplifier 2 x 12 W ### 8.6 Start-up sequence # 9. Internal circuitry TFA9810_3 © NXP B.V. 2008. All rights reserved. **TFA9810 NXP Semiconductors** ### Audio amplifier 2 x 12 W # 10. Limiting values Table 7. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------|--------------|-------------|------|------| | V_{P} | supply voltage | asymmetrical | -0.3 | +23 | V | | I _{ORM} | repetitive peak output current | | 3 | - | Α | | Tj | junction temperature | | - | +150 | °C | | T _{stg} | storage temperature | | – 55 | +150 | °C | | T _{amb} | ambient temperature | | -40 | +85 | °C | | P _{max} | maximum power dissipation | | - | 2.5 | W | Audio amplifier 2 x 12 W Table 7. Limiting values ...continued In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|---------------------------------|---------------------------------|--------------|----------------|------| | V_x | voltage on pin x | DIAG | $V_{SS}-0.3$ | +12 | V | | | | IN1P - IN1N | -12 | +12 | V | | | | IN2P - IN2N | -12 | +12 | V | | | | all other pins | $V_{SS}-0.3$ | $V_{DD} + 0.3$ | V | | V _{esd} | electrostatic discharge voltage | VINX with respect to other pins | -1500 | +1500 | V | | | | all other pins | -2000 | +2000 | V | ### 11. Thermal characteristics Table 8. Characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------------|--|--|-------------------|----------|---------|------------| | $R_{th(j-a)}$ | thermal resistance
from junction to
ambient | SO32. JEDEC test board
SO32. Two-layer application
board | <u>[1]</u> -
- | 41
44 | 44
- | K/W
K/W | | $\Psi_{\text{j-lead}}$ | thermal
characterization
parameter from
junction to lead | SO32 | <u>[1]</u> | | 30 | K/W | | $\Psi_{\text{j-top}}$ | thermal
characterization
parameter from
junction to top of
package | SO32 | [1] [2] | 4 | 8 | K/W | ^[1] Measured in a JEDEC high K-factor test board (standard EIA/JESD 51-7) in free air with natural convection. ## 12. Characteristics ### 12.1 Static characteristics Table 9. Static characteristics T_{amb} = 25 °C; V_P = 12 V; f_{osc} = 550 kHz; <u>Figure 33</u> unless otherwise specified | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|--------------------------|---|------|-----|-------|------| | Supply vo | Supply voltage | | | | | | | V_P | supply voltage | $V_P = V_{DDPx} - V_{SSPx}$ | 8 | 12 | 20 | V | | I _{off} | off-state current | off mode | - | 110 | 200 | μΑ | | Iq | quiescent current | with load, filter, and snubbers connected | - | 35 | 45 | mA | | ENABLE i | nput | | | | | | | V_{IL} | LOW-level input voltage | with respect to V _{SSD} | -0.3 | - | +0.8 | V | | V_{IH} | HIGH-level input voltage | with respect to V _{SSD} | 3 | - | V_P | V | FA9810_3 © NXP B.V. 2008. All rights reserved. ^[2] Strongly depends on where the measurement is taken on the case. Audio amplifier 2 x 12 W Table 9. Static characteristics ...continued T_{amb} = 25 °C; V_P = 12 V; f_{osc} = 550 kHz; <u>Figure 33</u> unless otherwise specified | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |---------------------|--|----------------------------------|------------|---------------|----------------------|---------------------|------| | I _I | input current | V _I = 5 V | | - | 1 | 20 | μΑ | | SO/OL inp | ut | | | | | | | | V _{IL} | LOW-level input voltage | with respect to V _{SSD} | | - | - | 0.4 | V | | V _{IH} | HIGH-level input voltage | with respect to V _{SSD} | | 3 | 4 | 4.5 | V | | STABI | | | | | | | | | V _{STABI} | voltage on pin STABI | with respect to V _{SS} | | 10 | 11 | 12 | V | | Comparato | or full-differential input st | age | | | | | | | 0001(.)(04) | equivalent input offset | | | - | - | 1 | mV | | | voltage | 20 Hz < f < 20 kHz | | - | - | 15 | μV | | V_{cm} | common mode voltage | | | $V_{SSA} + 3$ | - | V _{DDA} –1 | V | | I _{IB} | input bias current | | | - | - | 1 | μΑ | | OverTemp | erature Protection (OTP) | | | | | | | | T _{prot} | protection temperature | | | 150 | - | - | °C | | OverVoltag | ge Protection (OVP) | | | | | | | | $V_{th(ovp)}$ | overvoltage protection threshold voltage | level internal fixed | | 20 | 21.5 | 23 | V | | UnderVolta | ge Protection (UVP) | | | | | | | | $V_{P(uvp)}$ | undervoltage protection supply voltage | level internal fixed | | 7 | 7.5 | 8 | V | | OverCurre | nt Protection (OCP) | | | | | | | | I _{O(ocp)} | overcurrent protection output current | | <u>[1]</u> | 3 | 3.5 | - | Α | | Window Pr | otection (WP) | | | | | | | | Vo | output voltage | high level | | - | $V_{DDA} - 1$ | - | V | | | | low level | | - | V _{SSA} + 1 | - | V | ^[1] Current limiting concept: in overcurrent condition no interruption of the audio signal in case of impedance drop. ### 12.2 Dynamic characteristics Table 10. Dynamic characteristics T_{amb} = 25 °C; V_P = 12 V; R_L = 8 Ω ; Figure 33 unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------|-----------|------------|-----|-----|-----|------| | PWM outpo | ut | | | | | | | t _r | rise time | | - | 10 | - | ns | | t _f | fall time | | - | 10 | - | ns | Audio amplifier 2 x 12 W Table 10. Dynamic characteristics ... continued T_{amb} = 25 °C; V_P = 12 V; R_L = 8 Ω ; Figure 33 unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------|----------------------------------|--|--------------|------|------|------| | t _{resp} | response time | transition PWM output from | - | 60 | - | ns | | | | LOW to HIGH | - | 50 | - | ns | | | | $V_I = 70 \text{ mV}$ | | | | | | | | $V_{I} = 3.3 \text{ V}$ | | | | | | | | transition PWM output from | - | 60 | - | ns | | | | HIGH to LOW | - | 50 | - | ns | | | | $V_I = 70 \text{ mV}$ | | | | | | | | $V_{I} = 3.3 \text{ V}$ | | | | | | $t_{w(min)}$ | minimum pulse width | PWM output | - | 60 | - | ns | | R_{DSon} | drain-source on-state resistance | | <u>[1]</u> - | 0.28 | 0.35 | Ω | | η_{po} | output power efficiency | output power 2 x 9 W into 8 Ω .
P _o = P _{o(nom)} | [2] 87 | 89 | - | % | ^[1] High-side and low-side power switch have the same series resistance. ### 12.3 AC characteristics measured in a typical application Table 11. AC characteristics measured in typical application T_{amb} = 25 °C; V_P = 12 V; R_L = 8 Ω ; f_{osc} = 550 kHz; <u>Figure 33</u> unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------|---|--|-----|------|-----|------| | V _P | supply voltage | $V_P = V_{DDPx} - V_{SSPx}$ | 8 | 12 | 20 | V | | P _{o(RMS)} | RMS output power | $R_L = 8 \Omega$; $V_P = 12 V$;
THD = 10 %; Two channel
driven; no heat sink required. | - | 9.5 | - | W | | Po | output power | $V_P = 12 \text{ V}; R_L = 8 \Omega$ | | | | | | | | THD = 10 % | 8.5 | 9.5 | - | W | | | | THD = 1 % | 6.5 | 7.5 | - | W | | | | V_P = 14 V; R_L = 8 Ω ;
THD = 10 %; thermally limited | - | 12 | - | W | | | | V_P = 16 V; R_L = 8 Ω ;
THD = 10 %; thermally limited | - | 15 | - | W | | | | V_P = 12 V; R_L = 6 Ω ;
THD = 10 %; thermally limited | - | 12 | - | W | | | | V_P = 12 V; R_L = 4 Ω ;
THD = 10 %; thermally limited | - | 15 | - | W | | THD+N | total harmonic
distortion-plus-noise | P_0 is 1 W; f = 1 kHz; AES17 brick-wall filter | - | 0.04 | 0.1 | % | | η _{ρο} | output power efficiency | $P_0 = 9 W$ | 87 | 89 | - | % | | G _{v(cl)} | closed-loop voltage
gain | $V_{I} = 100 \text{ mV (RMS)}; f_{i} = 1 \text{ kHz}$ | 19 | 19.7 | 21 | dB | | $V_{n(o)}$ | output noise voltage | Inputs shorted;
AES17 brick-wall filter | - | 150 | - | μV | ^[2] Output power measured across the loudspeaker load. Output power is measured indirectly via R_{DSon}. Audio amplifier 2 x 12 W Table 11. AC characteristics measured in typical application ...continued T_{amb} = 25 °C; V_P = 12 V; R_L = 8 Ω ; f_{osc} = 550 kHz; Figure 33 unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---------------------------------|--|---------------|-----|-----|------| | S/N | signal-to-noise ratio | $V_o = 10 \text{ V (RMS)}$; gain 20 dB | - | 96 | - | dB | | SVRR | supply voltage ripple rejection | $V_{ripple} = 2 V_{(p-p)}$; $f_i = 1 \text{ kHz}$ | <u>[1]</u> 34 | 45 | - | dB | | $\alpha_{ t CS}$ | channel separation | $P_o = 1 W$; $f_i = 1 kHz$ | 55 | 70 | - | dB | ^[1] Minimum value determined by R5, R10, R17, R22 equalling +1 % and R7, R14, R18, R20 equalling -1 %. ### 13. Quality specification In accordance with SNW-FQ-611-E, 'if this type is used as an audio amplifier'. The number of the quality specification can be found in the Quality Reference Handbook. The handbook can be ordered using the code 9398 510 63011. ### 14. Application information ### 14.1 Output power estimation For BTL configuration the output power just before clipping can be estimated using Equation 1: $$BTL: P_{o0.5\%} = \frac{\left[\left[\frac{R_L}{R_L + 2 \times (R_{DSon} + R_s)}\right] \times V_P\right]^2}{2 \times R_L}$$ (1) Where, - V_P = supply voltage (V_{DDPx} − V_{SSPx}) [V] - R_I = load resistance [Ω] - R_{DSon} = drain-source on-state resistance [Ω] - R_s = series resistance $[\Omega]$ - P_{o0.5 %} = output power at the THD level of 0.5 % [W] The output power at 10 % THD can be estimated by using Equation 2: $$P_{o10\%} = 1.25 \times P_{o0.5\%} \tag{2}$$ Figure 26 and Figure 27 below show the estimated output power at THD = 0.5 % and THD = 10 % as a function of the BLT supply voltage for different load impedances. Audio amplifier 2 x 12 W ### 14.2 Output current limiting The peak output current is internally limited above a level of 3 A minimum. During normal operation the output current should not exceed this threshold level of 3 A, otherwise the output signal will be distorted. The peak output current in BTL can be estimated using Equation 3: $$I_{O}max \le \frac{V_{P}}{R_{L} + 2 \times (R_{DSon} + R_{s})} \le 3 \text{ A}$$ $$\tag{3}$$ Where: • V_P = supply voltage $(V_{DDPx} - V_{SSPx})$ [V]. Audio amplifier 2 x 12 W - R_L = load resistance [Ω]. - R_{DSon} = drain-source on-state resistance [Ω]. - R_s = series resistance $[\Omega]$. #### Example: A 4 Ω speaker in BTL configuration can be used up to a supply voltage of 12 V without running into current limiting. Current limiting (clipping) will avoid audio holes, but it causes a sound distortion similar to voltage clipping. #### 14.3 Speaker configuration and impedance For a flat-frequency response (second-order Butterworth filter) it is necessary to change the low-pass filter components L_{LC} and C_{LC} according to the speaker configuration and impedance. Table 12 shows the practical required values: Table 12. Filter component values | Configuration | Impedance [Ω] | L _{LC} [μF] | C _{LC} [nF] | |---------------|------------------------|----------------------|----------------------| | BTL | 4 | 10 | 1500 | | | 6 | 16 | 1000 | | | 8 | 22 | 680 | ### 14.4 Differential input For a high common-mode rejection ratio and a maximum of flexibility in the application, the audio inputs of the application are fully differential. The input configuration for a differential-input application is illustrated in Figure 28. ### 14.5 Single-ended input When using an audio source with a single-ended 'out', it is important to connect the IN1N from the application board to the VSS/GND of the audio source (e.g. Audio DSP). The input configuration for single-ended 'in' application is illustrated in Figure 29. TFA9810_3 © NXP B.V. 2008. All rights reserved. ### Audio amplifier 2 x 12 W ## 14.6 Curves measured in a typical application ### Audio amplifier 2 x 12 W 22 of 29 ### 14.7 Typical application diagram TFA9810 The typical application diagram with the TFA9810 supplied from an asymmetrical supply is shown in Figure 33. Fig 33. Typical application diagram TFA9810 Product data sheet **Rev. 03** **20 February 2008** Fig 34. Typical application diagram TFA9810 with externally adjusted switch-on time 24 of 29 Product data sheet **Rev. 03** **20 February 2008** Audio amplifier 2 x 12 W ### 14.8 Typical application: bill of materials Table 13. Typical application: bill of materials | Item | Quantity | Reference | Part | Description | |------|----------|---|--|--| | 1 | 2 | C1, C2. | 220 μF/35 V | General purpose 85 °C, diameter 8 mm | | 2 | 5 | C3, C4, C5, C31, C33. | 100 nF/50 V | SMD 0805 X7R | | 3 | 2 | C16, C17. | 1 μF/50 V | SMD 1206 X7R | | 4 | 4 | C6, C7, C18, C26 | 1 μF/25 V | MKT | | 5 | 4 | C8, C10, C21, C24. | 220 pF/25 V | SMD 0402 NP0 | | 6 | 4 | C9, C14, C19, C25. | 220 nF/25 V | SMD 0805 X7R | | 7 | 1 | C11 | 47 pF/25 V | SMD 0402 NP0 | | 8 | 4 | C12, C13, C20, C23. | 680 nF/25 V | MKT | | 9 | 1 | C15 | 330 nF/25 V | SMD 0805 X7R | | 10 | 1 | C22. | 68 pF/25 V | SMD 0402 NP0 | | 11 | 1 | C32 | 1000 μF/25 V | CE12-02R | | 12 | 3 | J1, J3, J6. | Screw terminal | Two pins | | 13 | 2 | J2, J5. | CINCH | CINCH | | 14 | 2 | J4, J7 | Jumper | Closed on demo board only | | 15 | 2 | L1, L2. | BEAD | SMD 1206 Würth Elektronik DC < 0.5 Ω 10 MHz > 80 Ω | | 16 | 4 | L3, L4, L5, L6. | 22 μΗ | 8RDY TOKO A7040HN-220M,
11RHBP TOKO A7503CY-220M or Sagami
7311NA-220M | | 17 | 5 | R3 | 10 / 0.25 W / 5 % | SMD 1206 | | 18 | 4 | R5, R14, R17, R26. | 100 k / 0.1 W /
1 % for 20 dB
200 k / 0.1 W /
1 % for 26 dB | SMD 0603 | | 19 | 12 | R6, R7, R10, R11, R18,
R19, R22, R23, R31, R32,
R33, R34. | 10 k / 0.1 W / 1 % | SMD 0603 | | 20 | 1 | SW1 | PCB switch | Secme 090320901 | | 21 | 1 | U1 | TFA9810T | SOT287-1 (SO32) NXP Semiconductors | ### 14.9 Snubber network Table 14. Snubber network: bill of materials | Item | Quantity | Reference | Part | Footprint | |------|----------|--------------------|----------------------|--------------| | 1 | 4 | C27, C28, C29, C30 | 470 pF, 25 V | SMD 0805 X7R | | 2 | 4 | R27, R28, R29, R30 | 10 / 0.25 W /
5 % | SMD 1206 | ### 15. Test information General Quality Specification for General Applications, Power management and RF Power. Document SNW-FQ-611 refers. TFA9810_3 © NXP B.V. 2008. All rights reserved. ## 16. Package outline #### SO32: plastic small outline package; 32 leads; body width 7.5 mm SOT287-1 #### Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. | OUTLINE | REFERENCES | | | | EUROPEAN | ISSUE DATE | |----------|------------|--------|-------|--|------------|---------------------------------| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | SOT287-1 | | MO-119 | | | | 00-08-17
03-02-19 | | | | | | | | _ | Fig 35. Package outline SOT287-1 (SO23) FA9810_3 © NXP B.V. 2008. All rights reserved. Audio amplifier 2 x 12 W # 17. Revision history ### Table 15. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |----------------|--------------|------------------------------------|---------------|------------| | TFA9810_3 | 20080220 | Product data sheet | - | TFA9810_2 | | Modifications: | | as been updated.
as been added. | | | | TFA9810_2 | 20070831 | Preliminary data sheet | - | TFA9810_1 | | TFA9810_1 | 20070815 | Preliminary data sheet | - | - | Audio amplifier 2 x 12 W ### 18. Legal information #### 18.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 18.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. ### 18.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. #### 18.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 19. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com TFA9810_3 © NXP B.V. 2008. All rights reserved. **TFA9810 NXP Semiconductors** > 19 20 ### Audio amplifier 2 x 12 W ### 20. Contents | 1 | General description | |--------------|---| | 2 | Features | | 3 | Applications | | 4 | Quick reference data | | 5 | Ordering information 2 | | 6 | Block diagram 3 | | 7 | Pinning information 4 | | 7.1 | Pinning | | 7.2 | Pin description 4 | | 8 | Functional description 5 | | 8.1 | General 5 | | 8.2 | Interfacing 5 | | 8.3 | Input comparators6 | | 8.3.1 | Operating in self-oscillating configuration 6 | | 8.3.2 | Operating in open-loop configuration 6 | | 8.4 | Diagnostic 6 | | 8.5 | Protections | | 8.6 | Start-up sequence | | 9 | Internal circuitry 8 | | 10 | Limiting values | | 11 | Thermal characteristics | | 12 | Characteristics | | 12.1 | Static characteristics | | 12.2 | Dynamic characteristics | | 12.3 | AC characteristics measured in a typical | | | application | | 13 | Quality specification | | 14 | Application information | | 14.1 | Output power estimation | | 14.2 | Output current limiting | | 14.3 | Speaker configuration and impedance 20 | | 14.4
14.5 | Differential input | | 14.5 | Curves measured in a typical application 21 | | 14.7 | Typical application diagram TFA9810 22 | | 14.8 | Typical application: bill of materials 25 | | 14.9 | Snubber network | | 15 | Test information | | 16 | Package outline | | 17 | Revision history | | 18 | | | 10 | Legal information | | 18.1 | • | | | Legal information | | 18.4 | Trademarks | 28 | |------|---------------------|----| | 19 | Contact information | 28 | | 20 | Contents | 29 | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2008. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 20 February 2008 Document identifier: TFA9810_3