Test Procedure for the NCP1230GEVB

10/12/2005

Figure 1: NCP1230 Test Setup

Table 1 : Test Equipme

ac Source 85 - 265 Vac, 47 - 64 Hz Variable Electronic Load				
Digital Multimeter	Voltec Precision Power Analyzer			

- 1. Connect the ac source to the input terminals J4.
- 2. Connect a variable electronic load to the output terminals J2, the PWB is marked +, for the positive output, and for the return.
- 3. Set the variable electronic load to 45 W.
- 4. Turn on the ac source and set it to 115 Vac at 60 Hz.
- 5. Verify that the NCP1230 provides 19 Vdc to the load.
- 6. Vary the load and input voltage. Verify that the output voltage is within the minimum and maximum values as shown in Table 3.

Vin (Vac)	Vo (Vdc) @ No Load	Vo (Vdc) @ 45 W	Vo (Vdc) @ 90 W	THD (%)	PF 90 W
90	19.1	19.0	18.8	6.5	0.995
115	19.1	19.0	18.8	7.8	0.995
230	18.7	19.1	18.8	20	0.97

Table 2: Expected Values for Varying Input Voltages and Loads

Table 2 shows typical values, the initial set point (19.0 Vdc may vary).

- 7. To verify total harmonic distortion (THD) first, shut off the ac power supply.
- 8. Connect the Voltec Precision Power Analyzer as shown in Figure 1.
- 9. Turn on the ac source to 115 Vac at 60 Hz and set the electronic load to 90 W (Only measure the THD at full load).
- 10. Verify that the current Harmonics (THD) are less than the maximum vales in Table 5.
- 11. Verify that the PF is greater than the minimum values in Table 5.
- 12. Set the ac source output to 230 Vac at 60 Hz.
- 13. Verify that the current Harmonics (THD) are less than the maximum vales in Table 5.
- 14. Verify that the PF is greater than the minimum values in Table 5.
- 15. Set the ac source to 115 Vac, set the load to 0 Adc, and measure the standby power, refer to Table 4 for the maximum acceptable input power.
- 16. Set the ac source to 230 Vac, and refer to Table 4 for the maximum input power.

Vin (Vac)	Pinmax (W)	Vomin (Vdc)	Vomax (Vdc)	IO (Adc)	Po (W)	Eff (%)
90	115	18.7	19.1	4.85	90	80.0
115	114	18.7	19.1	4.85	90	80.0
230	112	18.7	19.1	4.85	90	81.0

Table 3 : Regulation

Table 4: Stand-by Power

Vin	Pinmax
(Vac)	(mW)
115	150
230	200

Table 5: Power Factor and THD

Vin	PFmin	THDmax	РО
(Vac)	(W)	(%)	(W)
90	0.990	8.0	90
115	0.990	9.0	90
230	0.96	21.0	90