

January 2003 Revised February 2003

100LVEL16 3.3V ECL Differential Receiver

General Description

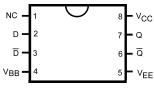
The 100LVEL16 is a low voltage differential receiver that contains an internally supplied voltage source, $V_{BB}.$ When used in a single ended input condition the unused input must be tied to $V_{BB}.$ When operating in this mode use a 0.01 μF capacitor to decouple V_{BB} and V_{CC} and also limit the current sinking or sourcing capability to 0.5mA. When V_{BB} is not used it should be left open.

With inputs open the differential Q outputs default LOW and $\overline{\mathbf{Q}}$ outputs default HIGH.

The 100 series is temperature compensated.

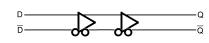
Features

- Typical propagation delay of 300 ps
- Typical I_{EE} of 17 mA
- Internal pull-down resistors on D
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8
- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance:


Human Body Model > 2000V Machine Model > 150V

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description
100LVEL16M	M08A	KVL16	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
100LVEL16M8 (Preliminary)	MA08D	KV16	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide


Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagram

Top View

Logic Diagram

Pin Descriptions

Pin Name	Description
Q, Q	ECL Data Outputs
D, D	ECL Data Inputs
V_{BB}	Reference Voltage
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

0.0V to +8.0V PECL Supply Voltage (V_{CC}) $V_{EE} = 0V$ NECL Supply Voltage (V_{EE}) $V_{CC} = 0V$ 0.0V to -8.0V PECL DC Input Voltage (V_I) V_{EE} = 0V 0.0V to +6.0V

NECL DC Input Voltage $(V_I) V_{CC} = 0V$ 0.0V to -6.0V

DC Output Current (I_{OUT})

Continuous 50 mA Surge 100 mA V_{BB} Sink/Source Current (I_{BB}) ±0.5 mA Storage Temperature (T_{STG}) -65°C to +150°C

PECL Power Supply

 $V_{CC} = 3.0V$ to 3.8V $(V_{EE} = 0V)$

NECL Power Supply

 $(V_{CC} = 0V)$ $V_{\text{EE}} = -3.8V \text{ to } -3.0V$

Free Air Operating Temperature (T_A) -40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

LVPECL DC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ (Note 2)

Symbol	Parameter	-40°C				25°C		85°C			Units
Syllibol	Farameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 3)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
V _{OL}	Output LOW Voltage (Note 3)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V _{IH}	Input HIGH Voltage (Single Ended)			2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single Ended)			1825	1490		1825	1490		1825	mV
V _{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
V _{IHCMR}	Input HIGH Voltage Common Mode										
	Range (Differential) (Note 4)										
	V _{PP} < 500mV	1.2		2.9	1.1		2.9	1.1		2.9	V
	V _{PP} ≥ 500mV	1.5		2.9	1.4		2.9	1.4		2.9	V
I _{IH}	Input HIGH Current (Note 5)			150			150			150	μА
I _{IL}	Input LOW Current (Note 5) D	0.5			0.5			0.5			μА
	₫	-600			-600			-600			

Note 2: Input and output parameters vary 1 to 1 with V_{CC} . V_{EE} can vary $\pm 0.3 V$.

Note 3: Outputs are terminated through a 50Ω Resistor to V_{CC} – 2.0V.

Note 4: V_{IHCMR} minimum varies 1 to 1 with V_{EE} . V_{IHCMR} maximum varies 1 to 1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the difference of th ferential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and

Note 5: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than

LVNECL DC Electrical Characteristics $V_{CC} = 0.0V$; $V_{EE} = -3.3V$ (Note 6)

Symbol	Parameter	-40°C				25°C			Units		
Symbol	raiametei	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullits
I _{EE}	Power Supply Current		17	23		17	23		18	24	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
V _{IHCMR}	Input HIGH Voltage Common Mode										
	Range (Differential) (Note 8)										
	V _{PP} < 500mV	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
	V _{PP} ≥ 500mV	-1.8		-0.4	-1.9		-0.4	-1.9		-0.4	V
I _{IH}	Input HIGH Current			150			150			150	μА
I _{IL}	Input LOW Current D	0.5			0.5			0.5			μА
	₫	-600			-600			-600			μΑ

Note 6: Input and output parameters vary 1 to 1 with V_{CC} . V_{EE} can vary $\pm 0.3 V$.

Note 7: Outputs are terminated through a 50Ω Resistor to V_{CC} – 2.0V.

Note 8: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1-to-1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V

Note 9: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained

100LVEL16 AC Electrical Characteristics $V_{CC} = 3.3V$; $V_{EE} = 0.0V$ or $V_{CC} = 0.0V$; $V_{EE} = -3.3V$ (Note 10) (Note 11)

Symbol	Parameter	-40°C			25°C			85°C			Units	Figure
Symbol	r ai ailletei	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Oiiita	Number
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz	
t _{PLH} , t _{PHL}	Propagation Delay to Output (Diff)	150	275	400	225	300	375	240	315	390	ps	Figures
	(SE)	100	275	450	175	300	425	190	315	440	ps	1, 3
t _{SKEW}	Duty Cycle Skew (Note 12)		5	30		5	20		5	20	ps	
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
V _{PP}	Input Swing	150		1000	150		1000	150		1000	mV	Figure 1
t _r , t _f	Output Rise Times Q (20% to 80%)	120	220	320	120	220	320	120	220	320	ps	Figure 2

Note 10: V_{EE} can vary ± 0.3V.

Note 11: Measured using a 750 mV input swing centered at V_{CC} - 1.32V; 50% duty cycle clock source; $t_r = t_f = 250$ ps (20% - 80%) at $t_{IN} = 1$ MHz. All loading with 50 Ω to V_{CC} - 2.0V.

Note 12: Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device under identical conditions.

Switching Waveforms

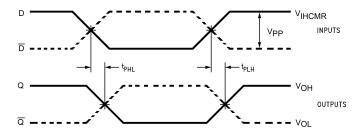


FIGURE 1. Differential to Differential Propagation Delay

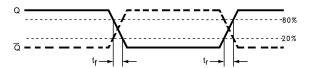


FIGURE 2. Differential Output Edge Rates

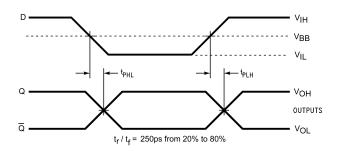
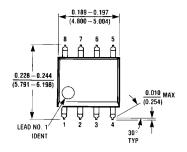
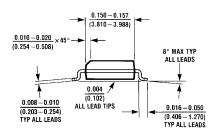
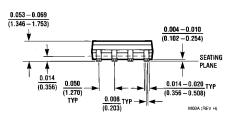





FIGURE 3. Single Ended to Differential Propagation Delay

Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.118±0.004 $[3 \pm 0.1]$ SYMM -A-(0.189) [4.8] 0.118±0.004 0.193±0.004 [3±0.1] [4.9±0.1] -B-(0.040) [1.02] PIN IDENT (0.016)(0.0256) TYP [0.41] [0.65] LAND PATTERN RECOMMENDATION (0.0256) TYP [0.65]0.005 GAGE PLANE 0.030-0.037 0.005 [0.13] TYP [0.76-0.94] (0.010)[0.25] -C- ▼ ○ 0.002 [0.05] C 0.012±0.002 TYP → (0.033) 0.021±0.005 00 [0.3±0.05] [0.53±0.12] 0.002-0.006 0.0375 [0.06-0.15] SEATING PLANE - 0.002 [0.05]W AS BS [0.953] 0.007±0.002 [0.18±0.05] TYP MAOSD (REV A)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide Package Number MA08D

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com