
September 2011 Doc ID 022172 Rev 1 1/46

UM1467
User manual

Getting started with software and firmware environments
for the STM32F4DISCOVERY Kit

1 Introduction

This document describes the software, firmware environment and development
recommendations required to build an application around the STM32F4DISCOVERY board.

It presents the firmware applications package provided within this board with details on its
architecture and contents. It provides guidelines to novice users on how to build and run a
sample application and allows them to create and build their own application.

This document is structured as follows:

■ System requirements to use this board and how to run the built-in demonstration are
provided in Section 2: Getting started.

■ Section 3 describes the firmware applications package.

■ Section 5 presents development toolchain installation and overview of ST-LINK/V2
interface.

■ Section 6, Section 7, Section 8, and Section 9 introduce how to use the following software
development toolchains:
– IAR Embedded Workbench® for ARM (EWARM) by IAR Systems
– Microcontroller Development Kit for ARM (MDK-ARM) by Keil™
– TrueSTUDIO® by Atollic
– TASKING VX-toolset for ARM Cortex by Altium

Although this user manual cannot cover all the topics relevant to software development
environments; it demonstrates the first basic steps necessary to get started with the
compilers/debuggers.

Reference documents
■ STM32F4DISCOVERY high-performance discovery board data brief

■ STM32F4DISCOVERY peripherals firmware examples (AN3983)

■ STM32F40x reference manual (RM0090)

■ STM32F405xx STM32F407xx datasheet

The above documents are available at www.st.com/stm32f4-discovery.

www.st.com

http://www.st.com

UM1467 Contents

Doc ID 022172 Rev 1 2/46

Contents

1 Introduction . 1

2 Getting started . 4

2.1 System requirements . 4

2.2 Running the built-in demonstration . 5

3 Description of the firmware package . 6

3.1 Libraries folder . 6

3.1.1 CMSIS subfolder . 6

3.1.2 STM32_USB_Device_Library subfolder . 7

3.1.3 STM32_USB_HOST_Library subfolder . 7

3.1.4 STM32_USB_OTG_Driver subfolder . 7

3.1.5 STM32F4xx_StdPeriph_Driver subfolder . 7

3.2 Project folder . 7

3.2.1 Demonstration subfolder . 7

3.2.2 Master_Workspace subfolder . 8

3.2.3 Peripheral_Examples subfolder . 8

3.3 Utilities folder . 8

4 Binary images for reprogramming firmware applications 9

5 ST-LINK/V2 installation and development . 10

6 Using IAR Embedded Workbench® for ARM . 11

6.1 Building an existing EWARM project . 11

6.2 Debugging and running your EWARM project . 12

6.3 Creating your first application using the EWARM toolchain 14

6.3.1 Managing source files . 14

6.3.2 Configuring project options . 16

7 Using MDK-ARM Microcontroller Development Kit by Keil™ 20

7.1 Building an existing MDK-ARM project . 20

7.2 Debugging and running your MDK-ARM project 21

7.3 Creating your first application using the MDK-ARM toolchain 23

Contents UM1467

3/46 Doc ID 022172 Rev 1

7.3.1 Managing source files . 23

7.3.2 Configuring project options . 25

8 Using Atollic TrueSTUDIO® . 28

8.1 Building an existing TrueSTUDIO project . 28

8.2 Debugging and running your TrueSTUDIO project 31

8.3 Creating your first application using TrueSTUDIO toolchain 32

9 Using TASKING . 36

9.1 Building an existing TASKING project . 36

9.2 Debugging and running your TASKING project . 40

9.3 Creating your first application using TASKING toolchain 41

10 Revision history . 45

UM1467 Getting started

Doc ID 022172 Rev 1 4/46

2 Getting started

2.1 System requirements
Before running your application, you should establish the connection with the
STM32F4DISCOVERY board as following.

Figure 1. Hardware environment

To run and develop any firmware applications on your STM32F4DISCOVERY board, the
minimum requirements are as follows:

– Windows PC (2000, XP, Vista, 7)

– 'USB type A to Mini-B' cable, used to power the board (through USB connector
CN1) from host PC and connect to the embedded ST-LINK/V2 for debugging and
programming

Additional hardware accessories will be needed to run some applications:

– 'USB type A to Micro-B' cable, used to connect the board (through USB connector
CN5) as USB Device to host PC.

– Headphone with male jack connector.

Getting started UM1467

5/46 Doc ID 022172 Rev 1

2.2 Running the built-in demonstration
The board comes with the demonstration firmware preloaded in the Flash memory. Follow
the steps below to run it:

– Check jumper position on the board, JP1 on, CN3 on (Discovery selected).

– Connect the STM32F4DISCOVERY board to a PC with a 'USB type A to Mini-B'
cable through USB connector CN1 to power the board. Red LED LD2 (PWR) then
lights up.

– Four LEDs between B1 and B2 are blinking.

– Press User Button B1 then MEMS sensor is enabled, move the board and observe
the four LEDs blinking according to the motion direction and speed.

– If you connect a second 'USB type A to Micro-B' cable between PC and CN5
connector then the board is recognized as standard mouse and its motion will also
control the PC cursor.

UM1467 Description of the firmware package

Doc ID 022172 Rev 1 6/46

3 Description of the firmware package

The STM32F4DISCOVERY firmware applications are provided in one single package and
supplied in one single zip file. The extraction of the zip file generates one folder,
STM32F4-Discovery_FW_VX.Y.Z, which contains the following subfolders:

Figure 2. Hardware environment

1. VX.Y.Z refer to the package version, ex. V1.0.0

3.1 Libraries folder
This folder contains the Hardware Abstraction Layer (HAL) for STM32F4xx Devices.

3.1.1 CMSIS subfolder

This subfolder contains the STM32F4xx and Cortex-M4F CMSIS files.

Cortex-M4F CMSIS files consist of:
– Core Peripheral Access Layer: contains name definitions, address definitions and

helper functions to access Cortex-M4F core registers and peripherals. It defines also
a device independent interface for RTOS Kernels that includes debug channel
definitions.

– CMSIS DSP Software Library: features a suite of common signal processing
functions for use on Cortex-M processor based devices. The library is completely
written in C and is fully CMSIS compliant. High performance is achieved through
maximum use of Cortex-M4F intrinsics.

STM32F4xx CMSIS files consist of:

– stm32f4xx.h: this file contains the definitions of all peripheral registers, bits, and
memory mapping for STM32F4xx devices. The file is the unique include file used in
the application programmer C source code, usually in the main.c.

– system_stm32f4xx.c/.h: This file contains the system clock configuration for
STM32F4xx devices. It exports SystemInit() function which sets up the system

Description of the firmware package UM1467

7/46 Doc ID 022172 Rev 1

clock source, PLL multiplier and divider factors, AHB/APBx prescalers and Flash
settings. This function is called at startup just after reset and before connecting to the
main program. The call is made inside the startup_stm32f4xx.s file.

– startup_stm32f4xx.s: Provides the Cortex-M4F startup code and interrupt vectors for
all STM32F4xx device interrupt handlers.

3.1.2 STM32_USB_Device_Library subfolder

This subfolder contains USB Device Library Core and the class drivers.

The Core folder contains the USB Device library machines as defined by the revision 2.0
Universal Serial Bus Specification.

The Class folder contains all the files relative to the Device class implementation. It is
compliant with the specification of the protocol built in these classes.

3.1.3 STM32_USB_HOST_Library subfolder

This subfolder contains USB Host Library Core and the class drivers.

The Core folder contains the USB Host library machines as defined by the revision 2.0
Universal Serial Bus Specification.

The Class folder contains all the files relative to the Host class implementation. It is
compliant with the specification of the protocol built in these classes.

3.1.4 STM32_USB_OTG_Driver subfolder

This subfolder contains the low level drivers for STM32F4xx USB HS and FS cores. It
provides an hardware abstraction layer, USB communication operations and interfaces used
by the high level Host and Device Libraries to access the core.

3.1.5 STM32F4xx_StdPeriph_Driver subfolder

This subfolder contains sources of STM32F4xx peripheral drivers (excluding USB and
Ethernet).

Each driver consists of a set of routines and data structures covering all peripheral
functionalities. The development of each driver is driven by a common API (application
programming interface) which standardizes the driver structure, the functions and the
parameter names.

Each peripheral has a source code file, stm32f4xx_ppp.c, and a header file,
stm32f4xx_ppp.h. The stm32f4xx_ppp.c file contains all the firmware functions required to
use the PPP peripheral.

3.2 Project folder
This folder contains the source files of the STM32F4DISCOVERY firmware applications.

3.2.1 Demonstration subfolder

This subfolder contains the demonstration source files with preconfigured project for
EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains.

UM1467 Description of the firmware package

Doc ID 022172 Rev 1 8/46

A binary images (*.hex and *.dfu) of this demonstration is provided under Binary subfolder.
You can use the STM32F4xx’s embedded Bootloader or any in-system programming tool to
reprogram the demonstration using this binary image.

3.2.2 Master_Workspace subfolder

This subfolder contains, for some toolchains, a multi-project workspace allowing you to
manage all the available projects (provided under the subfolders listed below) from a single
workspace window.

3.2.3 Peripheral_Examples subfolder

This subfolder contains a set of examples for some peripherals with preconfigured projects
for EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains. See Section 5 and
STM32F4DISCOVERY peripheral firmware examples, AN3983, for further details.

3.3 Utilities folder
This folder contains the abstraction layer for the STM32F4DISCOVERY hardware. It
provides the following drivers:

– stm32f4_discovery.c: provides functions to manage the user push button and 4 LEDs
(LD3.LD6)

– stm32f4_discovery_audio_codec.c/.h: provides functions to manage the audio DAC
(CS43L22)

– stm32f4_discovery_lis302dl.c/.h: provides functions to manage the MEMS
accelerometer (LIS302DL).

Binary images for reprogramming firmware applications UM1467

9/46 Doc ID 022172 Rev 1

4 Binary images for reprogramming firmware
applications

This section describes how to use the provided binary images to reprogram the firmware
applications. The STM32F4DISCOVERY firmware package contains binary images (*.hex
and *.dfu) of the provided applications which allow to use the STM32F4xx's embedded
Bootloader or any in-system programming tool to reprogram these applications easily.

Below are the steps to follow:

● Using “in-system programming tool”

– Connect the STM32F4DISCOVERY board to a PC with a 'USB type A to Mini-B'
cable through USB connector CN1 to power the board.

– Make sure that the embedded ST-LINK/V2 is configured for in-system
programming (both CN3 jumpers ON).

– Use *.hex binary (for example,
\Project\Demonstration\Binary\STM32F4-Discovery_Demonstration_V1.0.0.hex)
with your preferred in-system programming tool to reprogram the demonstration
firmware (ex. STM32 ST-LINK Utility, available for download from www.st.com).

● Using “Bootloader (USB FS Device in DFU mode)”

– Configure the STM32F4DISCOVERY board to boot from “System Memory” (boot
pins BOOT0:1 / BOOT1:0)

– Set BOOT0 pin to high level: on the male header P2 place a jumper between
BOOT0 pin and VDD pin

– Set BOOT1(PB2) pin to low level: on the male header P1 place a jumper between
PB2 pin and GND pin

– Connect a 'USB type A to Mini-B' cable between PC and USB connector CN1 to
power the board.

– Connect a 'USB type A to Micro-B' cable between PC and USB connector CN5,
the board will be detected as USB device.

– Use *.dfu binary (for example,
\Project\Demonstration\Binary\STM32F4-Discovery_Demonstration_V1.0.0.dfu)
with “DFUse\DFUse Demonstration" tool (available for download from
www.st.com) to reprogram the demonstration firmware.

UM1467 ST-LINK/V2 installation and development

Doc ID 022172 Rev 1 10/46

5 ST-LINK/V2 installation and development

STM32F4DISCOVERY board includes an ST-LINK/V2 embedded debug tool interface that
is supported by the following software toolchains:

● IAR™ Embedded Workbench for ARM (EWARM) available from www.iar.com

The toolchain is installed by default in the C:\Program Files\IAR Systems\Embedded
Workbench 6.2 directory on the PC’s local hard disk.

After installing EWARM, install the ST-LINK/V2 driver by running the
ST-Link_V2_USB.exe from [IAR_INSTALL_DIRECTORY]\Embedded Workbench
6.2\arm\drivers\ST-Link \ST-Link_V2_USBdriver.exe

● RealView Microcontroller Development Kit (MDK-ARM) toolchain available from
www.keil.com

The toolchain is installed by default in the C:\Keil directory on the PC’s local hard disk;
the installer creates a start menu µVision4 shortcut.

When connecting the ST-LINK/V2 tool, the PC detects new hardware and asks to install
the ST-LINK_V2_USB driver. The “Found New Hardware wizard” appears and guides
you through the steps needed to install the driver from the recommended location.

● Atollic TrueSTUDIO® STM32 available from www.atollic.com

The toolchain is installed by default in the C:\Program Files\Atollic directory on the PC’s
local hard disk.

The ST-Link_V2_USB.exe is installed automatically when installing the software
toolchain.

● Altium™ TASKING VX-toolset for ARM® Cortex-M available from www.tasking.com

The toolchain is installed by default in the “C:\Program Files\TASKING directory on the
PC’s local hard disk. The ST-Link_V2_USB.exe is installed automatically when
installing the software toolchain.

Note: The embedded ST-LINK/V2 supports only SWD interface for STM32 devices.

Refer to the firmware package release notes for the version of the supporting development
toolchains.

Using IAR Embedded Workbench® for ARM UM1467

11/46 Doc ID 022172 Rev 1

6 Using IAR Embedded Workbench® for ARM

6.1 Building an existing EWARM project
The following is the procedure for building an existing EWARM project.

1. Open the IAR Embedded Workbench® for ARM (EWARM).

Figure 3 shows the basic names of the windows referred to in this document.

Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)

2. In the File menu, select Open and click Workspace to display the Open Workspace
dialog box. Browse to select the demonstration workspace file and click Open to launch
it in the Project window.

3. In the Project menu, select Rebuild All to compile your project.

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 12/46

4. If your project is successfully compiled, the following window in Figure 4 is displayed.

Figure 4. EWARM project successfully compiled

6.2 Debugging and running your EWARM project
In the IAR Embedded Workbench IDE, from the Project menu, select Download and
Debug or, alternatively, click the Download and Debug button the in toolbar, to program the
Flash memory and begin debugging.

Figure 5. Download and Debug button

The debugger in the IAR Embedded Workbench can be used to debug source code at C
and assembly levels, set breakpoints, monitor individual variables and watch events during
the code execution.

Using IAR Embedded Workbench® for ARM UM1467

13/46 Doc ID 022172 Rev 1

Figure 6. IAR Embedded Workbench debugger screen

To run your application, from the Debug menu, select Go. Alternatively, click the Go button
in the toolbar to run your application.

Figure 7. Go button

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 14/46

6.3 Creating your first application using the EWARM toolchain

6.3.1 Managing source files

Follow these steps to manage source files.

1. In the Project menu, select Create New Project and click OK to save your settings.

Figure 8. Create New Project dialog box

2. Name the project (for example, NewProject.ewp) and click Save to display the IDE
interface.

Figure 9. IDE interface

To create a new source file, in the File menu, open New and select File to open an empty
editor window where you can enter your source code.

Using IAR Embedded Workbench® for ARM UM1467

15/46 Doc ID 022172 Rev 1

The IAR Embedded Workbench enables C color syntax highlighting when you save your file
using the dialog File > Save As… under a filename with the *.c extension. In Figure 10:
main.c example file, the file is saved as main.c.

Figure 10. main.c example file

Once you have created your source file you can add this file to your project, by opening the
Project menu, selecting Add and adding the selected file as in Figure 11: Adding files to a
project.

Figure 11. Adding files to a project

If the file is added successfully, Figure 12: New project file tree structure is displayed.

Figure 12. New project file tree structure

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 16/46

6.3.2 Configuring project options

Follow these steps to configure project options.

1. In the Project Editor, right-click on the project name and select Options... to display the
Options dialog box as in Figure 13.

Figure 13. Configuring project options

2. In the Options dialog box, select the General Options category, open the Target tab
and select Device - ST -STM32F4xx.

Figure 14. General options > Target tab

Using IAR Embedded Workbench® for ARM UM1467

17/46 Doc ID 022172 Rev 1

3. Select the Linker category, open the Config tab, in the Linker configuration file pane
select Override default and click Edit to display the Linker configuration file editor.

Figure 15. Linker > Config tab

4. In the Linker configuration file editor dialog box, open the Vector Table tab and set
the .intvec.start variable to 0x08000000.

Figure 16. Linker configuration file editor dialog box > Vector Table tab

5. Open the Memory Regions tab, and enter the variables as shown in Figure 17.

Figure 17. Linker configuration file editor dialog box > Memory Regions tab

6. Click Save to save the linker settings automatically in the Project directory.

UM1467 Using IAR Embedded Workbench® for ARM

Doc ID 022172 Rev 1 18/46

7. If your source files include header files, select the C/C++ Compiler category, open the
Preprocessor tab, and specify their paths as shown in Figure 18. The path of the
include directory is a relative path, and always starts with the project directory location
referenced by $PROJ_DIR$

Figure 18. C/C++ Compiler > Preprocessor tab

8. To set up the ST-Link embedded debug tool interface, select the Debugger category,
open the Setup tab and from the drop-down Driver menu, select ST-Link as shown in
Figure 19.

Figure 19. Debugger > Setup tab

9. Open the Debugger tab and select Use flash loader(s) as shown in Figure 20.

Figure 20. Select Flash loaders

Using IAR Embedded Workbench® for ARM UM1467

19/46 Doc ID 022172 Rev 1

10. Select the ST-Link category, open the ST-Link tab and select SWD as the connection
protocol as shown in Figure 21.

Figure 21. ST-Link communication protocol

11. Click OK to save the project settings.

12. To build your project, follow the instructions given in Section 6.1: Building an existing
EWARM project on page 11.

13. Before running your application, establish the connection with the
STM32F4DISCOVERY board as described in Section 2: Getting started.

14. To program the Flash memory and begin debugging, follow the instructions given in
Section 6.2: Debugging and running your EWARM project on page 12.

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 20/46

7 Using MDK-ARM Microcontroller Development Kit by
Keil™

7.1 Building an existing MDK-ARM project
Follow these steps to build an existing MDK-ARM project.

1. Open the MDK-ARM µVision4 IDE, debugger, and simulation environment.

Figure 22: MDK-ARM µVision4 IDE environment shows the basic names of the
windows referred to in this section.

Figure 22. MDK-ARM µVision4 IDE environment

2. In the Project menu, select Open Project... to display the Select Project File dialog
box. Browse to select the STM32F4-Discovery.uvproj project file and click Open to
launch it in the Project window.

3. In the Project menu, select Rebuild all target files to compile your project.

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

21/46 Doc ID 022172 Rev 1

4. If your project is successfully compiled, the following Build Output window (Figure 23:
Build Output - MDK-ARM µVision4 project successfully compiled) is displayed.

Figure 23. Build Output - MDK-ARM µVision4 project successfully compiled

7.2 Debugging and running your MDK-ARM project
In the MDK-ARM µVision4 IDE, click the magnifying glass to program the Flash memory
and begin debugging as shown below in Figure 24.

Figure 24. Starting a MDK-ARM µVision4 debugging session

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 22/46

The debugger in the MDK-ARM IDE can be used to debug source code at C and assembly
levels, set breakpoints, monitor individual variables and watch events during the code
execution as shown below in Figure 25.

Figure 25. MDK-ARM IDE workspace

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

23/46 Doc ID 022172 Rev 1

7.3 Creating your first application using the MDK-ARM toolchain

7.3.1 Managing source files

Follow these steps to manage source files.

1. In the Project menu, select New µVision Project... to display the Create Project File
dialog box. Name the new project and click Save.

Figure 26. Creating a new project

2. When a new project is saved, the IDE displays the Device selection dialog box. Select
the device used for testing. In this example, we will use the STMicroelectronics device
mounted on the STM32F4DISCOVERY board. In this case, double-click on
STMicroelectronics, select the STM32F407VGT6 device and click OK to save your
settings.

Figure 27. Device selection dialog box

3. Click Yes to copy the STM32 Startup Code to the project folder and add the file to the
project as shown in Figure 28.

Figure 28. Copy the STM32 Startup Code dialog box

Note: The default STM32 startup file includes the SystemInit function. You can either comment out
this file to not use it or add the system_stm32f4xx.c file from the STM32f4xx firmware
library.

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 24/46

To create a new source file, in the File menu, select New to open an empty editor window
where you can enter your source code.

The MDK-ARM toolchain enables C color syntax highlighting when you save your file using
the dialog File > Save As… under a filename with the *.c extension. In this example
(Figure 29), the file is saved as main.c.

Figure 29. main.c example file

MDK-ARM offers several ways to add source files to a project. For example, you can select
the file group in the Project Window > Files page and right-click to open a contextual
menu. Select the Add Files... option, and browse to select the main.c file previously
created.

Figure 30. Adding source files

If the file is added successfully, the following window is displayed.

Figure 31. New project file tree structure

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

25/46 Doc ID 022172 Rev 1

7.3.2 Configuring project options

1. In the Project menu, select Options for Target 1 to display the Target Options dialog
box.

2. Open the Target tab and enter IROM1 and IARM1 start and size settings as shown in
Figure 32.

Figure 32. Target Options dialog box - Target tab

3. Open the Debug tab, click Use and select the ST-Link Debugger. Then, click Settings
and select the SWD protocol. Click OK to save the ST-Link setup settings.

4. Select Run to main().

UM1467 Using MDK-ARM Microcontroller Development Kit by Keil™

Doc ID 022172 Rev 1 26/46

Figure 33. Target Options dialog box - Debug tab

5. Open the Utilities tab, select Use Target Driver for Flash Programming and select
the ST-Link Debugger from the drop-down menu.

6. Verify that the Update Target before Debugging option is selected.

7. Click OK to save your settings.

Figure 34. Target Options dialog box - Utilities tab

8. In the Project menu, select Build Target.

9. If your project is successfully built, the following window is displayed.

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1467

27/46 Doc ID 022172 Rev 1

Figure 35. MDK-ARM µVision4 project successfully built

10. Before running your application, establish the connection with the
STM32F4DISCOVERY board as described in Section 2: Getting started.

11. To program the Flash memory and begin debugging, follow the instructions given in
Section 6.2: Debugging and running your EWARM project on page 12.

UM1467 Using Atollic TrueSTUDIO®

Doc ID 022172 Rev 1 28/46

8 Using Atollic TrueSTUDIO®

8.1 Building an existing TrueSTUDIO project
1. Open the TrueSTUDIO®/STM32 product folder and select the Atollic TrueSTUDIO®

STM32 product name. The program launches and asks for the Workspace location.

Figure 36. TrueSTUDIO workspace launcher dialog box

2. Browse to select the STM32F4DISCOVERY Demonstration TrueSTUDIO workspace
and click OK to save your settings and to display the Welcome screen. To start using
Atollic TrueSTUDIO®, click Start using TrueSTUDIO.

Figure 37. Atollic TrueSTUDIO®/STM32 Lite welcome screen

3. The TrueSTUDIO Discovery workspace contains a demo project for the
STM32F4DISCOVERY kit. To load this project, in the File menu, select Import... to
display the Import dialog box.

Using Atollic TrueSTUDIO® UM1467

29/46 Doc ID 022172 Rev 1

4. In the Import window, open General, select Existing Projects into Workspace and
click Next.

Figure 38. Atollic TrueSTUDIO®/STM32 Lite import source select dialog box

5. Click Select root directory, browse to the TrueSTUDIO workspace folder and select
the STM32F4-Discovery project.

UM1467 Using Atollic TrueSTUDIO®

Doc ID 022172 Rev 1 30/46

Figure 39. Atollic TrueSTUDIO®/STM32 Lite import projects dialog box

6. In the Projects pane, select the STM32F4-Discovery and click Finish.

7. In the Project Explorer, select the STM32F4-Discovery project. Open the Project
menu, and click Build Project.

8. If your project is successfully compiled, the following window is displayed.

Figure 40. TrueSTUDIO® project successfully compiled

Using Atollic TrueSTUDIO® UM1467

31/46 Doc ID 022172 Rev 1

8.2 Debugging and running your TrueSTUDIO project
In the Project Explorer, select the STM32F4-Discovery project and press F11 to display
the Debug Configuration dialog box.

Figure 41. TrueSTUDIO Debug Configuration dialog box

9. In the Main tab, configure the project as shown in Figure 41 and click OK to save your
settings and to program the Flash memory and begin debugging.

UM1467 Using Atollic TrueSTUDIO®

Doc ID 022172 Rev 1 32/46

Figure 42. TrueSTUDIO Debug window

The debugger in the Atollic TrueSTUDIO can be used to debug source code at C and
assembly levels, set breakpoints, monitor individual variables and watch events during the
code execution.

To run your application, from the Run menu, select Resume, or alternatively click the
Resume button in the toolbar.

8.3 Creating your first application using TrueSTUDIO toolchain
TrueSTUDIO includes a dedicated connection to the STM32F4DISCOVERY board. When
choosing this connection, all required files (startup file, firmware library, etc.) are added to
the workspace and sample files are generated in the project folder to simplify development.
The debug settings are automatically configured by selecting STM32F4DISCOVERY as the
evaluation board.

Follow these steps to create your first application using TrueSTUDIO toolchain.

1. Open the TrueSTUDIO®/STM32 product folder and select the Atollic TrueSTUDIO®
STM32 product name. The program launches and asks for the Workspace location.
Browse to select an existing workspace, or enter a new workspace location and click
OK to confirm.

Using Atollic TrueSTUDIO® UM1467

33/46 Doc ID 022172 Rev 1

Figure 43. TrueSTUDIO workspace launcher dialog box

2. When the Atollic TrueSTUDIO® displays its Welcome window, click Start using
TrueSTUDIO to open the main window. In the File menu, select New and click C
Project.

3. Name the new project, in the Project type pane select STM32 C Project and click
Next.

Figure 44. TrueSTUDIO® C Project dialog box

UM1467 Using Atollic TrueSTUDIO®

Doc ID 022172 Rev 1 34/46

4. In the TrueSTUDIO® Build Settings dialog box, select STM32F4-Discovery as
Evaluation board, configure the other settings as shown in Figure 45 and click Next.

Figure 45. TrueSTUDIO® Build Settings dialog box

Note: Choosing STM32F4DISCOVERY as the evaluation board, will configure the project as
follows:

● Microcontroller: STM32F407VGT6

● Debug probe: ST-LINK

● Connection: Serial Wire Debug (SWD).

5. Verify that the JTAG Probe is ST-LINK and click Finish to confirm your settings.

Figure 46. TrueSTUDIO® Misc Settings dialog box

6. Your project is successfully created. Atollic TrueSTUDIO® generates target specific
sample files (main.c, stm32f4xx_it.c...) in the Project folder to simplify development.
You can tailor this project to your needs by modifying these sample files.

Using Atollic TrueSTUDIO® UM1467

35/46 Doc ID 022172 Rev 1

7. To build your project, in the Project menu, click Build Project.

8. Your project is successfully compiled.

Figure 47. TrueSTUDIO® project successfully built

9. Before running your application, establish the connection with the
STM32F4DISCOVERY board as described in Section 2: Getting started. To program
the Flash memory and begin debugging, follow the instructions given in Section 8.2:
Debugging and running your TrueSTUDIO project on page 31.

UM1467 Using TASKING

Doc ID 022172 Rev 1 36/46

9 Using TASKING

9.1 Building an existing TASKING project
Follow these steps to build an existing TASKING project.

1. Open the TASKING VX-toolset for ARM Cortex IDE. The program launches and asks
for the Workspace location.

Figure 48. TASKING workspace launcher dialog box

2. Browse to select the STM32F4DISCOVERY Demonstration TASKING workspace and
click OK to save your settings and to display the Welcome screen. To start using
TASKING, click Go to the workbench.

Figure 49. TASKING VX-Toolset for ARM Cortex welcome screen

Using TASKING UM1467

37/46 Doc ID 022172 Rev 1

3. The TASKING Discovery workspace contains a demo project for the
STM32F4DISCOVERY kit. To load this project, in the File menu, select Import... to
display the Import dialog box.

4. In the Import window, open General, select Existing Projects into Workspace and
click Next.

Figure 50. TASKING import source select dialog box

UM1467 Using TASKING

Doc ID 022172 Rev 1 38/46

5. Click Select root directory, browse to the TASKING workspace folder and select the
STM32F4-Discovery project.

Figure 51. TASKING import projects dialog box

6. In the Projects window, select the STM32F4-Discovery and click Finish.

7. In the Project Explorer, select the STM32F4-Discovery project. Open the Project
menu, and click Build Project.

Using TASKING UM1467

39/46 Doc ID 022172 Rev 1

8. If your project is successfully compiled, the following window is displayed.

Figure 52. TASKING project successfully compiled

UM1467 Using TASKING

Doc ID 022172 Rev 1 40/46

9.2 Debugging and running your TASKING project
Figure 53 shows the first step for debugging and running your TASKING project. From the
project toolbar menu select Debug > Debug STM32F4-Discovery_Demo.

Figure 53. TASKING debug window

The debugger in TASKING can be used to debug source code at C and assembly levels, set
breakpoints, monitor individual variables and watch events during the code execution.

To run your application, from the Run menu, select Resume, or alternatively click the
Resume button in the toolbar.

Using TASKING UM1467

41/46 Doc ID 022172 Rev 1

9.3 Creating your first application using TASKING toolchain
The debug session is launched as follows:

1. Open TASKING VX-Toolset for ARM Cortex. The program launches and asks for the
Workspace location. Browse to select an existing workspace, or enter a new
workspace location and click OK to confirm.

Figure 54. TASKING workspace launcher dialog box

2. When TASKING displays its Welcome window, click Go to workbench to open the
main window. In the File menu, select New > TASKING VX-toolset for ARM C/C++
Project.

3. In the New C/C++ Project dialog box, enter the new Project name; then in the Project
type box, select TASKING ARM Application and click Next.

Figure 55. TASKING New C/C++ Project dialog box

UM1467 Using TASKING

Doc ID 022172 Rev 1 42/46

The list of the supported devices is shown, select STMicroelectronics > STM32F407VG >
STM32F407VGT6 as shown below in Figure 56.

Figure 56. Processor selection

To configure the project for Manta DISCOVERY board, select Debug > Debug
configurations and choose STMicroelectronics STM32F4 Manta Discovery Kit.
Choosing STMicroelectronics STM32F4 Manta Discovery Kit as the evaluation board,
will add automatically the needed linker file and will configure the project as follows:

● Microcontroller: STM32F407VGT6

● Debug probe: ST-LINK

● Connection: Serial Wire Debugging (SWD).

Figure 57. Debug configuration

Using TASKING UM1467

43/46 Doc ID 022172 Rev 1

4. To add source file to your project right click on the project from the C/C++ project
window and select Import.

5. The Import dialog box is displayed, select General and the desired file as shown in
Figure 58: TASKING Import dialog box

Figure 58. TASKING Import dialog box

6. Click Next.Fill the displayed window as following and then browse to your source file.

UM1467 Using TASKING

Doc ID 022172 Rev 1 44/46

Figure 59. Adding a new source file window.

7. Select main.c file and click Finish.

8. To build your project click on Project > Build Project from the toolbar menu.

9. Your Project is successfully compiled.

Figure 60. Tasking project successfully built

10. Before running your application, establish the connection with the
STM32F4DISCOVERY board as described in Section 2: Getting started.

Revision history UM1467

45/46 Doc ID 022172 Rev 1

10 Revision history

Table 1. Document revision history

Date Revision Changes

23-Sep-2011 1 Initial release.

UM1467

Doc ID 022172 Rev 1 46/46

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Introduction
	2 Getting started
	2.1 System requirements
	Figure 1. Hardware environment

	2.2 Running the built-in demonstration

	3 Description of the firmware package
	Figure 2. Hardware environment
	3.1 Libraries folder
	3.1.1 CMSIS subfolder
	3.1.2 STM32_USB_Device_Library subfolder
	3.1.3 STM32_USB_HOST_Library subfolder
	3.1.4 STM32_USB_OTG_Driver subfolder
	3.1.5 STM32F4xx_StdPeriph_Driver subfolder

	3.2 Project folder
	3.2.1 Demonstration subfolder
	3.2.2 Master_Workspace subfolder
	3.2.3 Peripheral_Examples subfolder

	3.3 Utilities folder

	4 Binary images for reprogramming firmware applications
	5 ST-LINK/V2 installation and development
	6 Using IAR Embedded Workbench® for ARM
	6.1 Building an existing EWARM project
	Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)
	Figure 4. EWARM project successfully compiled

	6.2 Debugging and running your EWARM project
	Figure 5. Download and Debug button
	Figure 6. IAR Embedded Workbench debugger screen
	Figure 7. Go button

	6.3 Creating your first application using the EWARM toolchain
	6.3.1 Managing source files
	Figure 8. Create New Project dialog box
	Figure 9. IDE interface
	Figure 10. main.c example file
	Figure 11. Adding files to a project
	Figure 12. New project file tree structure

	6.3.2 Configuring project options
	Figure 13. Configuring project options
	Figure 14. General options > Target tab
	Figure 15. Linker > Config tab
	Figure 16. Linker configuration file editor dialog box > Vector Table tab
	Figure 17. Linker configuration file editor dialog box > Memory Regions tab
	Figure 18. C/C++ Compiler > Preprocessor tab
	Figure 19. Debugger > Setup tab
	Figure 20. Select Flash loaders
	Figure 21. ST-Link communication protocol

	7 Using MDK-ARM Microcontroller Development Kit by Keil™
	7.1 Building an existing MDK-ARM project
	Figure 22. MDK-ARM µVision4 IDE environment
	Figure 23. Build Output - MDK-ARM µVision4 project successfully compiled

	7.2 Debugging and running your MDK-ARM project
	Figure 24. Starting a MDK-ARM µVision4 debugging session
	Figure 25. MDK-ARM IDE workspace

	7.3 Creating your first application using the MDK-ARM toolchain
	7.3.1 Managing source files
	Figure 26. Creating a new project
	Figure 27. Device selection dialog box
	Figure 28. Copy the STM32 Startup Code dialog box
	Figure 29. main.c example file
	Figure 30. Adding source files
	Figure 31. New project file tree structure

	7.3.2 Configuring project options
	Figure 32. Target Options dialog box - Target tab
	Figure 33. Target Options dialog box - Debug tab
	Figure 34. Target Options dialog box - Utilities tab
	Figure 35. MDK-ARM µVision4 project successfully built

	8 Using Atollic TrueSTUDIO®
	8.1 Building an existing TrueSTUDIO project
	Figure 36. TrueSTUDIO workspace launcher dialog box
	Figure 37. Atollic TrueSTUDIO®/STM32 Lite welcome screen
	Figure 38. Atollic TrueSTUDIO®/STM32 Lite import source select dialog box
	Figure 39. Atollic TrueSTUDIO®/STM32 Lite import projects dialog box
	Figure 40. TrueSTUDIO® project successfully compiled

	8.2 Debugging and running your TrueSTUDIO project
	Figure 41. TrueSTUDIO Debug Configuration dialog box
	Figure 42. TrueSTUDIO Debug window

	8.3 Creating your first application using TrueSTUDIO toolchain
	Figure 43. TrueSTUDIO workspace launcher dialog box
	Figure 44. TrueSTUDIO® C Project dialog box
	Figure 45. TrueSTUDIO® Build Settings dialog box
	Figure 46. TrueSTUDIO® Misc Settings dialog box
	Figure 47. TrueSTUDIO® project successfully built

	9 Using TASKING
	9.1 Building an existing TASKING project
	Figure 48. TASKING workspace launcher dialog box
	Figure 49. TASKING VX-Toolset for ARM Cortex welcome screen
	Figure 50. TASKING import source select dialog box
	Figure 51. TASKING import projects dialog box
	Figure 52. TASKING project successfully compiled

	9.2 Debugging and running your TASKING project
	Figure 53. TASKING debug window

	9.3 Creating your first application using TASKING toolchain
	Figure 54. TASKING workspace launcher dialog box
	Figure 55. TASKING New C/C++ Project dialog box
	Figure 56. Processor selection
	Figure 57. Debug configuration
	Figure 58. TASKING Import dialog box
	Figure 59. Adding a new source file window.
	Figure 60. Tasking project successfully built

	10 Revision history
	Table 1. Document revision history

