
Adafruit seesaw
Created by Dean Miller

Last updated on 2018-08-12 12:38:05 AM UTC

2
5
8
8
8
8
8
9
9
9
9
9

10
10
10
10
11
11
13
13
13
13
16
17
17
17
20
20
21
22
22
22
22
23

24
24
24

24
25
25
25
25

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins:
Logic Pins:
GPIO Pins:
Neopixel Pins:
Address Pins:
ADC Pins:
PWM Pins:
Interrupt Pins:
Programming Pins:

Arduino Wiring & Test
Arduino Wiring & Test
I2C Wiring
Download Adafruit_Seesaw library
Load Test Example
Documentation
CircuitPython Wiring & Test
CircuitPython Wiring & Test
I2C Wiring
Download Adafruit_CircuitPython_Seesaw library
Python Docs
Raspberry Pi Wiring & Test
Install Python Software
Enable I2C
Run example code
Documentation
Using the Seesaw Platform
Reading and Writing Data
Setting the Device Address
I2C Transactions

Writing Data
Reading Data

GPIO
Function Registers

GPIO register setup:

DIRSET (0x02, 32 bits, Write Only)
DIRCLR (0x03, 32 bits, Write Only)
GPIO (0x04, 32 bits, Read/Write)
SET (0x05, 32 bits, Write Only)
CLR (0x06, 32 bits, Write Only)

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 2 of 38

25
25
25
25
25
26
27
27
27
28
28
28
28
28
28
28
28
29
30
30
30
30
30
30
30
32
32
33
33
33
34
34
34
34
35
35
35
36
36
36
36

TOGGLE (0x07, 32 bits, Write Only)
INTENSET (0x08, 32 bits, Write Only)
INTENCLR (0x09, 32 bits, Write Only)
INTFLAG (0x0A, 32 bits, Read Only)
PULLENSET (0x0B, 32 bits, Write Only)
PULLENCLR (0x0C, 32 bits, Write Only)
Analog to Digital Converter
Function Registers
STATUS (0x00, 8bits, Read Only)
INTENSET (0x02, 8bits, Write Only)
INTENCLR (0x03, 8bits, Write Only)
WINMODE (0x04, 8bits, Write Only)
WINTHRESH (0x05, 32bits, Write Only)
CHANNEL_0 (0x07, 16bits, Read Only)
CHANNEL_1 (0x08, 16bits, Read Only)
CHANNEL_2 (0x09, 16bits, Read Only)
CHANNEL_3 (0x0A, 16bits, Read Only)
Interrupts
NeoPixel
Function Registers
PIN (0x01, 8bits, Write Only)
SPEED (0x02, 8bits, Write Only)
BUF_LENGTH (0x03, 16bits, Write Only)
BUF (0x04, 32 bytes, Write Only)
SHOW (0x05, 8bits, Write Only)
EEPROM
Function Registers
PWM
Function Registers
PWM_VAL (0x01, 16bits, Write Only)
UART
Function Registers
Status (0x00, 8bits, Read Only)
INTEN (0x2, 8bits, Read/Write)
INTENCLR (0x03, 8bits, Write Only)
BAUD (0x04, 32bits, Read/Write)
DATA (0x05, 32bytes, Read/Write)
Downloads
Documents
Schematic
Dimensions

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 3 of 38

38Documentation

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 4 of 38

Overview

Adafruit seesaw is a near-universal converter framework which allows you to add add and extend hardware support to
any I2C-capable microcontroller or microcomputer. Instead of getting separate I2C GPIO expanders, ADCs, PWM
drivers, etc, seesaw can be configured to give a wide range of capabilities.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 5 of 38

For example, our ATSAMD09 breakout with seesaw gives you

3 x 12-bit ADC inputs
3 x 8-bit PWM outputs
7 x GPIO with selectable pullup or pulldown
1 x NeoPixel output (up to 340 pixels)
1 x EEPROM with 64 byte of NVM memory (handy for storing small access tokens or MAC addresses)
1 x Interrupt output that can be triggered by any of the accessories
2 x I2C address selection pins
1 x Activity LED

But you can reprogram and reconfigure the chip to have more or less of each peripheral - as long as it fits into the
ATSAMD09D14's firmware! For example, there's also a UART converter but it isn't included in the default firmware.

The ATSAMD09 breakout is great for development of seesaw capabilities (we use it in-house for our design work) or
you can use it as-is to give your Raspberry Pi or ESP8266 more hardware support! Each breakout comes with the
assembled and tested board, as well as some header strips.

Please note: The boards do not come with a bootloader. If you want to do development using seesaw you'll need to
pick up a J-Link (https://adafru.it/BrS)and we recommend a SWD adapter breakout (https://adafru.it/u7d) - at this time
our project is for Atmel Studio but you could probably get it working with arm gcc and a Makefile. We don't provide any
support for custom builds of seesaw - we think this is cool and useful for the Maker community!

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 6 of 38

https://www.adafruit.com/?q=j-link
https://www.adafruit.com/product/2743

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 7 of 38

Pinouts

Power Pins:

Vin - this is the power pin. Since the ATSAMD09 uses 3.3V, we have included an on-board voltage regulator that
will take 3-5VDC and safely convert it down. You can power from 3.3V to 5V
3Vo - this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you like
GND - common ground for power and logic

Logic Pins:

23 / SCL - this is the I2C clock pin, connect to your microcontrollers I2C clock line. There is a 10K pullup on this
pin to 3.3V. I2C is 'open drain' which means as long as you don't add an extra pullup you can use with 5V logic
devices.
22 / SDA - this is the I2C data pin, connect to your microcontrollers I2C data line. There is a 10K pullup on this pin
to 3.3V. I2C is 'open drain' which means as long as you don't add an extra pullup you can use with 5V logic
devices.
RST - this is the reset pin. Pulling this pin to ground resets the device.

GPIO Pins:

Pins 9, 10, 11, 14, 15, 24, and 25 can be used as GPIO.

Neopixel Pins:

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 8 of 38

Pins 9, 10, 11, 14, 15, 24, and 25 can be used as the NeoPixel output.

Address Pins:

16 / AD0 - this is the ADDR0 pin. Connect this to ground to increment the devices I2C address by 1.
17 / AD1 - this is the ADDR1 pin. Connect this to ground to increment the devices I2C addres by 2.

ADC Pins:

2 - this pin can be configured as an ADC input.
3 - this pin can be configured as an ADC input.
4 - this pin can be configured as an ADC input.

PWM Pins:

5 - this pin can be configured as a PWM output.
6 - this pin can be configured as a PWM output.
7 - this pin can be configured as a PWM output.

Interrupt Pins:

8 / IRQ - this pin gets pulled low by the seesaw to signal to your host microcontroller that an interrupt has
occurred.

Programming Pins:

SWD - this pin connects to SWDIO of an SWD compatible programmer to program the device over SWD.
SWC - this pin connects to SWCLK of an SWD compatible programmer to program the device over SWD.
RST - this pin connects to RESET of an SWD compatible programmer to program the device over SWD.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 9 of 38

Arduino Wiring & Test

Arduino Wiring & Test

You can easily wire this breakout to any microcontroller, we'll be using an Adafruit Metro M0 Express (Arduino
compatible) with the Arduino IDE. But, you can use any other kind of microcontroller as well as long as it has I2C clock
and I2C data lines.

I2C Wiring

Connect Vin to the power supply, 3-5V is fine.
Connect GND to common power/data ground
Connect the SCL pin (23) to the I2C clock SCL pin on your Microcontroller.
Connect the SDA pin (22) to the I2C data SDA pin on your Microcontroller.
Connect the positive (long lead) of an LED to pin 15 on the seesaw breakout and the other lead to GND through
a 1k ohm resistor.

This seesaw uses I2C address 0x49 by default. You can change this by grounding the AD0/16 and/or AD1/15 pins, but
we recommend not doing that until you have it working

Download Adafruit_Seesaw library

To begin reading sensor data, you will need to download Adafruit_Seesaw from our github repository. You can do that
by visiting the github repo and manually downloading or, easier, just click this button to download the zip

https://adafru.it/A0t

https://adafru.it/A0t

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 10 of 38

https://github.com/adafruit/Adafruit_Seesaw/archive/master.zip

Rename the uncompressed folder Adafruit_Seesaw and check that the Adafruit_Seesaw folder
contains Adafruit_Seesaw .cpp and Adafruit_Seesaw .h

Place the Adafruit_Seesaw library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Load Test Example

Open up File->Examples->Adafruit_Seesaw->digital->blink and upload to your Arduino wired up to the seesaw
breakout. If everything is wired up correctly, the led should blink on and off repeatedly.

Documentation

see here (https://adafru.it/BrT) for documentation of the seesaw python API.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 11 of 38

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
https://adafruit.github.io/Adafruit_Python_seesaw/classAdafruit__Seesaw_1_1seesaw_1_1Seesaw.html

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 12 of 38

CircuitPython Wiring & Test

CircuitPython Wiring & Test

You can easily wire this breakout to a microcontroller running CircuitPython. We will be using a Metro M0 Express.

I2C Wiring

Connect Vin to the power supply, 3-5V is fine.
Connect GND to common power/data ground
Connect the SCL pin (23) to the I2C clock SCL pin on your CircuitPython board, usually marked SCL. On a
Gemma M0 this would be Pad #2/ A1
Connect the SDA pin (22) to the I2C data SDA pin on your CircuitPython board, usually marked SDA. On
an Gemma M0 this would be Pad #0/A2
Connect the positive (long lead) of an LED to pin 15 on the samd09 breakout and the other lead to GND through
a 1k ohm resistor.

The seesaw uses I2C address 0x49 by default. You can change this by grounding the AD0/16 and/or AD1/15 pins, but
we recommend not doing that until you have it working

Download Adafruit_CircuitPython_Seesaw library

To begin using the seesaw, you will need to download Adafruit_CircuitPython_Seesaw from our github repository. You
can do that by visiting the github repo and manually downloading or, easier, just click this button to download the zip

https://adafru.it/A0u

https://adafru.it/A0u

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 13 of 38

https://github.com/adafruit/Adafruit_CircuitPython_seesaw/archive/master.zip

Extract the zipped folder and rename the folder it contains to Adafruit_seesaw. drag the Adafruit_seesaw folder to
the lib folder that appears on the CIRCUITPY drive. You'll also need the adafruit_busdevice driver.

Open the code.py file on the CIRCUITPY drive and copy and paste the following code:

The LED attached to pin 15 should blink on and off repeatedly.

Our CircuitPython library may change APIs so consider this beta!

from board import *
import busio
import adafruit_seesaw
import time

myI2C = busio.I2C(SCL, SDA)

ss = adafruit_seesaw.Seesaw(myI2C)

ss.pin_mode(15, ss.OUTPUT);

while True:
 ss.digital_write(15, True) # turn the LED on (True is the voltage level)
 time.sleep(1) # wait for a second
 ss.digital_write(15, False) # turn the LED off by making the voltage LOW
 time.sleep(1)

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 14 of 38

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 15 of 38

Python Docs
Python Docs (https://adafru.it/C5y)

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 16 of 38

https://circuitpython.readthedocs.io/projects/seesaw/en/latest/

Raspberry Pi Wiring & Test
The Raspberry Pi also has an I2C interface that can be used to communicate with this seesaw

Install Python Software

Once your Pi is all set up, and you have internet access set up, lets install the software we will need. First make sure
your Pi package manager is up to date

Next, we will install the Raspberry Pi library and Adafruit_GPIO which is our hardware interfacing layer

Next install the adafruit seesaw python library.

Enable I2C

We need to enable the I2C bus so we can communicate with the seesaw.

select Advanced options, enable I2C, and then

finish.

sudo apt-get update

sudo apt-get install -y build-essential python-pip python-dev python-smbus git
git clone https://github.com/adafruit/Adafruit_Python_GPIO.git
cd Adafruit_Python_GPIO
sudo python setup.py install

sudo pip install Adafruit-seesaw

sudo raspi-config

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 17 of 38

https://learn.adafruit.com/assets/47803

With the Pi powered off, we can wire up the sensor to the Pi Cobbler like this:

Connect Vin to the 3V or 5V power supply (either is fine)
Connect GND to the ground pin on the Cobbler
Connect SDA (22) to SDA on the Cobbler
Connect SCL (23) to SCL on the Cobbler
Connect the positive (long lead) of an LED to pin 15 on the samd09 breakout and the other lead to GND through
a 1k ohm resistor.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 18 of 38

https://learn.adafruit.com/assets/47804
https://learn.adafruit.com/assets/47806
https://learn.adafruit.com/assets/47807

You can also use direct wires, we happen to have a Cobbler ready. remember you can plug the cobbler into the
bottom of the PiTFT to get access to all the pins!

Now you should be able to verify that the sensor is wired up correctly by asking the Pi to detect what addresses it can
see on the I2C bus:

It should show up under it's default address (0x49). If you don't see 49, check your wiring, did you install I2C support,
etc?

sudo i2cdetect -y 1

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 19 of 38

Run example code

At long last, we are finally ready to run our example code

If everything is set up correctly, the LED attached to pin 15 on the SAMD09 breakout should blink on and off
repeatedly. Press CTRL + C to stop the program running once you are satisfied with the blinking.

Documentation

See here (https://adafru.it/BrT) for documentation of the seesaw python API.

cd ~/
git clone https://github.com/adafruit/Adafruit_Python_seesaw.git
cd Adafruit_Python_seesaw/examples
sudo python blink.py

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 20 of 38

https://adafruit.github.io/Adafruit_Python_seesaw/classAdafruit__Seesaw_1_1seesaw_1_1Seesaw.html

Using the Seesaw Platform

The sections under this heading contain more detailed information about how the Seesaw platform works. If you are
using our Arduino, CircuitPython, or Python API you can skip these sections. These sections are intended for people
who either want to understand and modify seesaw, or who want to make their own API for a platform that is no
officially supported by Adafruit such as C/C++ on Raspberry Pi.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 21 of 38

Reading and Writing Data
The SeeSaw operates as an I2C slave device using standard I2C protocol. It uses the SDA and SCL pins to
communicate with the host system.

We do not use clock stretching. The I2C is 3.3V logic level (but often times a 5V microcontroller will work fine with 3.3V
logic levels and it is an open-drain protocol). Only 7-bit addressing is supported.

I2C pullup resistors are included in our SeeSaw boards but if you are DIY'ing, be sure to add your own! 2.2K - 10K is a
good range.

Setting the Device Address

Standard 7-bit addressing is used. The seesaw's default I2C address is initially configured in the compiled firmware (e.g
for the SAM09 SeeSaw breakout we use 0x49) but other boards will have a different base address.

This address can be modified using the address select pins. If address select pin 0 (PA16) is tied to ground on boot,
the I2C address is incremented by 1. If address select pin 1 (PA17) is pulled low, the I2C address is incremented by 2. If
both address select pins are pulled low, the I2C address is incremented by 3. Thus you can, with the same hardware,
have up to 4 devices

The I2C address can also be modified by writing a new address to EEPROM. See the EEPROM section for more
information.

I2C Transactions

We recommend using 100KHz I2C, but speeds of up to 400KHz are supported. You may want to decrease the
SDA/SCL pullups to 2.2K from 10K in that case.

Writing Data

A seesaw write command consists of the standard I2C write header (with the R/W bit set to 1), followed by 2
register bytes followed by zero or more data bytes.

The first register byte is the module base register address. Each module (GPIO, ADC, DAC, etc.) has it's own unique 8
bit base identifier.

The second register byte is the module function register address. This byte specifies the desired register within the
module to be written.

Thus we have up to 254 modules available (0x00 is reserved) and 255 functions per module - plenty to allow all sorts
of different capabilities!

In code, this may look like this (using the Arduino wire I2C object):

void Adafruit_seesaw::write(uint8_t moduleBase, uint8_t moduleFunction, uint8_t *buf, uint8_t num)
{
 Wire.beginTransmission((uint8_t)_i2caddr);
 Wire.write((uint8_t)moduleBase); //module base register address
 Wire.write((uint8_t)moduleFunction); //module function register address
 Wire.write((uint8_t *)buf, num); //data bytes
 Wire.endTransmission();
}

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 22 of 38

Reading Data

A register read is accomplished by first sending the standard I2C write header, followed by the two register bytes
corresponding to the data to be read. Allow a short delay, and then send a standard I2C read header (with the R/W bit
set to 0) to read the data.

The length of the required delay depends on the data that is to be read. These delays are discussed in the sections
specific to each module.

In code, this may look like this (using the Arduino wire I2C object):

The Arduino UNO Wire library implementation has a limit of 32 bytes per transaction so be aware you may
not be able to read/write more than that amount. We have designed the library to work within those
constraints

void Adafruit_seesaw::read(uint8_t moduleBase, uint8_t moduleFunction, uint8_t *buf, uint8_t num, uint16_t delay)
{
 Wire.beginTransmission((uint8_t)_i2caddr);
 Wire.write((uint8_t)moduleBase); //module base register address
 Wire.write((uint8_t)moduleFunction); //module function register address
 Wire.endTransmission();

 delayMicroseconds(delay);

 Wire.requestFrom((uint8_t)_i2caddr, num);

 for(int i=0; i<num; i++){
 buf[i] = Wire.read();
 }
}

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 23 of 38

GPIO
The GPIO module provides every day input and outputs. You'll get 3.3V logic GPIO pins that can act as outputs or
inputs. With pullups or pulldowns. When inputs, you can also create pin-change interrupts that are routed the the IRQ
pin.

The module base register address for the GPIO module is 0x01.

 Function Registers

Writes of GPIO function registers should contain 4 data bytes (32 bits) following the initial register data bytes. Each bit
in these registers represents a GPIO pin on PORTA of the seesaw device.

If the corresponding pin does not exist on the SeeSaw device, then reading or writing the bit has no effect.

We decided to go with this method to make GPIO toggling fast (rather than having one i2c transaction per individual
pin control) but the host processor will need to do a little work to keep the pins identified.

GPIO register setup:

DIRSET (0x02, 32 bits, Write Only)

Register

Address

Function

Name

Register

Size
Notes

0x02 DIRSET 32 bits Write Only

0x03 DIRCLR 32 bits Write Only

0x04 GPIO 32 bits Read/Write

0x05 SET 32 bits Write Only

0x06 CLR 32 bits Write Only

0x07 TOGGLE 32 bits Write Only

0x08 INTENSET 32 bits Write Only

0x09 INTENCLR 32 bits Write Only

0x0A INTFLAG 32 bits Read Only

0x0B PULLENSET 32 bits Write Only

0x0C PULLENCLR 32 bits Write Only

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 . . . Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PA31 PA30 PA29 PA28 PA27 . . . PA04 PA03 PA02 PA01 PA00

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 24 of 38

Writing a 1 to any bit in this register sets the direction of the corresponding pin to OUTPUT.

Writing zeros to this register has no effect.

DIRCLR (0x03, 32 bits, Write Only)

Writing a 1 to any bit in this register sets the direction of the corresponding pin to INPUT.

Writing zeros to this register has no effect.

GPIO (0x04, 32 bits, Read/Write)

When this register is written, all bits that are set to 0 will have their corresponding pins set LOW.

All bits that are set to 1 will have their corresponding pins set HIGH.

Reading this register reads all pins on PORTA of the seesaw device.

SET (0x05, 32 bits, Write Only)

Writing a 1 to any bit in this register writes the corresponding pin HIGH.

Writing zeros to this register has no effect.

CLR (0x06, 32 bits, Write Only)

Writing a 1 to any bit in this register writes the corresponding pin LOW.

Writing zeros to this register has no effect.

TOGGLE (0x07, 32 bits, Write Only)

Writing a 1 to any bit in this register toggles the corresponding pin.

Writing zeros to this register has no effect.

INTENSET (0x08, 32 bits, Write Only)

Writing a 1 to any bit in this register enables the interrupt on the corresponding pin. When the value on this pin
changes, the corresponding bit will be set in the INTFLAG register.

Writing zeros to this register has no effect.

INTENCLR (0x09, 32 bits, Write Only)

Writing a 1 to any bit in this register disables the interrupt on the corresponding pin.

Writing zeros to this register has no effect.

INTFLAG (0x0A, 32 bits, Read Only)

This register hold the status of all GPIO interrupts. When an interrupt fires, the corresponding bit in this register gets
set. Reading this register clears all interrupts.

Writing to this register has no effect.

PULLENSET (0x0B, 32 bits, Write Only)

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 25 of 38

Writing a 1 to any bit in this register enables the internal pullup or pulldown on the corresponding pin. The pull direction
(up/down) is determined by the GPIO (output) value - if the corresponding GPIO register bit is low, its a pulldown.
High, its a pullup.

Writing zeros to this register has no effect.

PULLENCLR (0x0C, 32 bits, Write Only)

Writing a 1 to any bit in this register disables the pull up/down on the corresponding pin.

Writing zeros to this register has no effect.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 26 of 38

Analog to Digital Converter
The ADC provides the ability to measure analog voltages at 10-bit resolution. The seesaw has 4 ADC inputs.

The module base register address for the ADC is 0x09

Conversions can be read by reading the corresponding CHANNEL register.

When reading ADC data, there should be at least a 500 microsecond delay between writing the register number you
would like to read from and attempting to read the data.

Allow a delay of at least 1ms in between sequential ADC reads on different channels.

ADC channels are:

Function Registers

STATUS (0x00, 8bits, Read Only)

This register contains status information on the ADC

Channel 0 PA02

Channel 1 PA03

Channel 2 PA04

Channel 3 PA05

Register Address Register Name Register Size Notes

0x00 STATUS 8 bits Read Only

0x02 INTENSET 8 bits Write Only

0x03 INTENCLR 8 bits Write Only

0x04 WINMODE Write Only

0x05 WINTHRESH 32 bits Write Only

0x07 CHANNEL_0 16 bits Read Only

0x08 CHANNEL_1 16 bits Read Only

0x09 CHANNEL_2 16 bits Read Only

0x0A CHANNEL_3 16 bits Read Only

Window mode or ADC interrupts is not yet supported as of the time of writing this guide.

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 27 of 38

INTENSET (0x02, 8bits, Write Only)

Writing a 1 to any bit in this register enables the corresponding interrupt.

Writing zeros to this register has no effect.

INTENCLR (0x03, 8bits, Write Only)

Writing a 1 to any bit in this register enables the corresponding interrupt.

Writing zeros to this register has no effect.

WINMODE (0x04, 8bits, Write Only)

Writing 1 to this register sets window control.

WINTHRESH (0x05, 32bits, Write Only)

This register sets the threshold values for window mode.

CHANNEL_0 (0x07, 16bits, Read Only)

ADC value for channel 0 (PA02).

CHANNEL_1 (0x08, 16bits, Read Only)

ADC value for channel 1 (PA03).

CHANNEL_2 (0x09, 16bits, Read Only)

ADC value for channel 2 (PA04).

CHANNEL_3 (0x0A, 16bits, Read Only)

ADC value for channel 3 (PA05).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved WINMON_INT ERROR

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved WINMON

Bits 31 - 16 Bits 15 - 0

High Threshold Low Threshold

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 28 of 38

Interrupts
The seesaw has a configurable interrupt pin that can be triggered through various channels.

Once the interrupt is triggered, it can be only be cleared when the conditions of it's source module(s) have been met
(e.g. data has been read, an interrupt has been cleared by reading an INTFLAG register).

See individual module sections for details on their available interrupt configurations.

The hardware interrupt pin is available on PA08 (#8)

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 29 of 38

NeoPixel
The seesaw has built in NeoPixel support for up to 341 pixels (RGB pixels, less if RGBW). The output pin as well as the
communication protocol frequency are configurable.

The module base register address for the NeoPixel module is 0x0E.

Function Registers

PIN (0x01, 8bits, Write Only)

This register sets the pin number (PORTA) that is used for the NeoPixel output.

SPEED (0x02, 8bits, Write Only)

The protocol speed.

0x00 = 400khz

0x01 = 800khz (default)

BUF_LENGTH (0x03, 16bits, Write Only)

the number of bytes currently used for the pixel array. This is dependent on when the pixels you are using are RGB or
RGBW.

BUF (0x04, 32 bytes, Write Only)

The data buffer. The first 2 bytes are the start address, and the data to write follows. Data should be written in blocks
of maximum size 30 bytes at a time.

SHOW (0x05, 8bits, Write Only)

Writing 1 to this register will display the pixels.

Writing zeros to this register has no effect.

Register Address Register Name Register Size Notes

0x01 PIN 8 bits Write Only

0x02 SPEED 8 bits Write Only

0x03 BUF_LENGTH 16 bits Write Only

0x04 BUF 32 bytes Write Only

0x05 SHOW 8 bits Write Only

Bytes 0 - 1 Bytes 2 - 32

Start address Data

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 30 of 38

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 31 of 38

EEPROM
The EEPROM module provides persistent storage of data across reboots. There are 64 bytes of EEPROM available for
use. Byte 63 (0x3F) can be written to to change the devices default I2C address.

The module base register address for the EEPROM module is 0x0D

Function Registers

This is not true EEPROM, but flash memory on the seesaw that performs the same function. Performing a chip
erase will erase all data stored in the emulated EEPROM. Also, be aware that the emulated EEPROM has a
limited write/erase cycle lifespan. Care should be taken to not write/erase too many times or you will get
inconsistant results and possibly damage the FLASH! The FLASH is rated for 100,000 cycles

Register Address Function Name Register Size Notes

0x00 - 0x3E General Purpose EEPROM 8 bits each Read/Write

0x3F I2C Address 8 bits Read/Write

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 32 of 38

PWM
The PWM module provides up to 4 8-bit PWM outputs.

The module base register address for the PWM module is 0x08.

PWM outputs are available on pins PA04, PA05, PA06, and PA07.

Function Registers

PWM_VAL (0x01, 16bits, Write Only)

The first byte written should be the PWM number you would like to write to. The second byte should be the pwm
value.

Register Address Register Name Register Size Notes

0x01 PWM_VAL 16 bits Write Only

Byte 0 Byte 1

PWM Number PWM Value

PWM Number Output Pin

0 PA04

1 PA05

2 PA06

3 PA07

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 33 of 38

UART

When the UART module is configured, the seesaw can act as an I2C UART bridge.

UART Pins are:

RX: PA11

TX: PA10

The module base register address for the UART is 0x02.

Function Registers

Status (0x00, 8bits, Read Only)

The ERROR bit is set when the UART encounters an error.

The DATA_RDY bit is set when there is data available in the RX buffer. This bit gets cleared when the data is read.

INTEN (0x2, 8bits, Read/Write)

Note that the default firmware on the SAMD09 breakout does not include UART support.

The I2C <-> UART bridge is still in beta at the time of writing this guide. Detailed specs are not yet available.

Register Address Register Name Regsiter Size Notes

0x00 STATUS 8 bits Read Only

0x02 INTEN 8 bits Read/Write

0x03 INTENCLR 8 bits Write Only

0x04 BAUD 32 bits Read/Write

0x05 DATA 32 bytes Read/Write

bits 7-2 bit 1 bit 0

Reserved DATA_RDY ERROR

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 34 of 38

If the DATA_RDY bit is set, the interrupt will fire when there is data in the RX buffer.

Writing zeros to this register has no effect.

INTENCLR (0x03, 8bits, Write Only)

same bits as INTEN. Writing 1 to any bit in this register disabled the corresponding interrupt.

Writing zeros to this register has no effect.

BAUD (0x04, 32bits, Read/Write)

Writing to this register sets the BAUD rate.

Default 9600

DATA (0x05, 32bytes, Read/Write)

Writing to the DATA register puts the data into the TX buffer to be output on the TX pin.

Reading from the DATA register reads the data from the RX buffer.

When this register is read, the DATA_RDY bit is cleared.

bits 7-1 bit 0

Reserved DATA_RDY

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 35 of 38

Downloads
Documents

Seesaw Arduino Driver (https://adafru.it/BrV)
Seesaw CircuitPython Driver (https://adafru.it/BrW)
Fritzing object in the Adafruit Fritzing library (https://adafru.it/aP3)
SAMD09 breakout PCB files (EAGLE format) (https://adafru.it/BrX)
SAMD09 datasheet (https://adafru.it/BrY)

Schematic

click to enlarge

Dimensions

in inches. Click to enlarge

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 36 of 38

https://github.com/adafruit/Adafruit_Seesaw
https://github.com/adafruit/Adafruit_CircuitPython_seesaw
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-SAMD09-Breakout-PCB/tree/master
https://cdn-learn.adafruit.com/assets/assets/000/047/797/original/Atmel-42414-SAM-D09_Datasheet.pdf?1509562415

© Adafruit Industries https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout Page 37 of 38

Documentation

Python API Documentation (https://adafru.it/BrT)
Arduino API Documentation (https://adafru.it/BrZ)

© Adafruit Industries Last Updated: 2018-08-12 12:38:04 AM UTC Page 38 of 38

https://adafruit.github.io/Adafruit_Python_seesaw/classAdafruit__Seesaw_1_1seesaw_1_1Seesaw.html
https://adafruit.github.io/Adafruit_Seesaw/classAdafruit__seesaw.html

	Guide Contents
	Overview
	Pinouts
	Power Pins:
	Logic Pins:
	GPIO Pins:
	Neopixel Pins:
	Address Pins:
	ADC Pins:
	PWM Pins:
	Interrupt Pins:
	Programming Pins:

	Arduino Wiring & Test
	Arduino Wiring & Test
	I2C Wiring
	Download Adafruit_Seesaw library
	Load Test Example
	Documentation
	CircuitPython Wiring & Test
	CircuitPython Wiring & Test
	I2C Wiring
	Download Adafruit_CircuitPython_Seesaw library
	Python Docs
	Raspberry Pi Wiring & Test
	Install Python Software
	Enable I2C
	Run example code
	Documentation
	Using the Seesaw Platform
	Reading and Writing Data
	Setting the Device Address
	I2C Transactions
	Writing Data
	Reading Data

	GPIO
	Function Registers
	GPIO register setup:

	DIRSET (0x02, 32 bits, Write Only)
	DIRCLR (0x03, 32 bits, Write Only)
	GPIO (0x04, 32 bits, Read/Write)
	SET (0x05, 32 bits, Write Only)
	CLR (0x06, 32 bits, Write Only)
	TOGGLE (0x07, 32 bits, Write Only)
	INTENSET (0x08, 32 bits, Write Only)
	INTENCLR (0x09, 32 bits, Write Only)
	INTFLAG (0x0A, 32 bits, Read Only)
	PULLENSET (0x0B, 32 bits, Write Only)
	PULLENCLR (0x0C, 32 bits, Write Only)
	Analog to Digital Converter
	Function Registers
	STATUS (0x00, 8bits, Read Only)
	INTENSET (0x02, 8bits, Write Only)
	INTENCLR (0x03, 8bits, Write Only)
	WINMODE (0x04, 8bits, Write Only)
	WINTHRESH (0x05, 32bits, Write Only)
	CHANNEL_0 (0x07, 16bits, Read Only)
	CHANNEL_1 (0x08, 16bits, Read Only)
	CHANNEL_2 (0x09, 16bits, Read Only)
	CHANNEL_3 (0x0A, 16bits, Read Only)
	Interrupts
	NeoPixel
	Function Registers
	PIN (0x01, 8bits, Write Only)
	SPEED (0x02, 8bits, Write Only)
	BUF_LENGTH (0x03, 16bits, Write Only)
	BUF (0x04, 32 bytes, Write Only)
	SHOW (0x05, 8bits, Write Only)
	EEPROM
	Function Registers
	PWM
	Function Registers
	PWM_VAL (0x01, 16bits, Write Only)
	UART
	Function Registers
	Status (0x00, 8bits, Read Only)
	INTEN (0x2, 8bits, Read/Write)
	INTENCLR (0x03, 8bits, Write Only)
	BAUD (0x04, 32bits, Read/Write)
	DATA (0x05, 32bytes, Read/Write)
	Downloads
	Documents
	Schematic
	Dimensions
	Documentation

