
Heart Rate Monitor Interface
User Manual

danjuliodesigns	 Revision 1.1

Table of Contents

Heart Rate Monitor Interface
 3

Description
 3

Features
 3

Applications
 3

Version Information
 4

Disclaimer
 4

Contact
 4

Electrical Specifications
 5

Mechanical Specifications
 6

Getting Started
 7

Block Diagram
 7

Connections
 7

Communication/Power
 7

Configuration Jumpers
 10

Status Indicators
 11

Prototype Connections
 11

Orientation with Polar Transmitter
 12

Quick Test
 13

Quick Test with Host Computer
 13

Quick Test using HyperTerminal (Microsoft Windows)
 14

Quick Test using QuickTerm (Apple Mac OS X)
 18

Operation
 20

Host Interface Operation
 20

Serial Interface (USB or Logic-level physical interface)
 20

I2C Interface
 21

Heart Rate Monitor Algorithms
 22

Command List
 23

Read Analog Input
 24

Set Utility Port Directions
 25

Get Heart Rate Data
 26

danjuliodesigns

Heart Rate Monitor Interface User Manual
 1

Get Utility Port
 27

Get Mode
 28

Set Utility Port
 29

Set Mode
 30

Get Version
 31

Appendix A: Troubleshooting
 32

Appendix B: Code Examples
 34

Unix/Mac OS X using the serial interface
 34

Processing using the serial interface
 38

Arduino using I2C
 40

Appendix C: Schematic
 43

danjuliodesigns

Heart Rate Monitor Interface User Manual
 2

Heart Rate Monitor Interface

Description
The Heart Rate Monitor Interface (HRMI) is an intelligent peripheral device that converts the ECG signal from Polar Electro

Heart Rate Monitor (HRM) transmitters into easy-to-use heart rate data. It implements a sophisticated algorithm for

computing an average heart rate even with noisy or intermittent data from the transmitter. The HRMI also provides

analog inputs and a digital input/output utility port to ease integration into custom applications.

Features
• Multiple interfaces: USB, Logic-level serial and I2CTM

• Dual heart rate processing algorithms: averaged and raw

• Uses the RMCM01 Polar OEM receiver

• Compatible with coded and non-coded Polar transmitters including T31, T31C, T61C and Wearlink®

• 32-entry heart rate data history buffer

• Four 8-bit ADC inputs

• Up to a 5 channel digital input/output utility port

• Simple command/response interface

• Programmable power-on default operation

Applications
• Custom exercise equipment

• Portable heart rate monitoring devices

• Bio-feedback devices

• Heart beat aware body-worn electronics

danjuliodesigns

Heart Rate Monitor Interface User Manual
 3

Version Information

Datasheet

Revision

HRMI

Firmware

Version

Comments

1.0 0x01 Initial Release

1.1 0x01 Updated schematic and product image to match Sparkfun v17 design

Minor typographical corrections

Disclaimer
Copyright © danjuliodesigns, LLC, 2008-2010, All rights reserved.

Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted

or reproduced in any material or electronic form without the prior written consent of the copyright holder.

This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular

purpose is either made or implied.

danjuliodesigns, LLC. will not accept any claim for damages howsoever arising as a result of use or failure of this product.

Your statutory rights are not affected.

This document and the functionality of the product may be subject to change without notice.

Contact
Email: info@danjuliodesigns.com

Website: http://www.danjuliodesigns.com/sparkfun/hrmi.html

danjuliodesigns

Heart Rate Monitor Interface User Manual
 4

This product is not a medical grade ECG or EKG monitor. This product or any variant of it is not intended for

use in any medical appliance, device or system in which the failure of the product might reasonably be

expected to result in personal injury.

mailto:info@danjuliodesigns.com
mailto:info@danjuliodesigns.com
http://www.danjuliodesigns.com/sparkfun/hrmi.html
http://www.danjuliodesigns.com/sparkfun/hrmi.html

Electrical Specifications

Parameter Min Typ Max Unit Conditions

External Voltage Supply 3.6 5.5 V When powered from the external power

connection

USB Voltage Supply 4.5 5 5.5 V When powered from a USB host

External Current 30 45 mA No connection to any Analog or Utility port

signal

Reception Range 80 92 100 cm Typical using a T31 transmitter

Reception Frequency 5.5 kHz

Analog Voltage Range VSS VCC V Note 1

Utility Port Input Low Level VSS 0.15*

VCC

V 3.3V ≤ VCC ≤ 4.5V

VSS 0.8 V 4.5V ≤ VCC ≤ 5.5V

Utility Port Input High Level 0.25*

VCC +

0.8

VCC V 3.3V ≤ VCC ≤ 4.5V

2 VCC V 4.5V ≤ VCC ≤ 5.5V

Utility Port Output Low Level 0.6 V IOL = 8.5 mA, VCC = 4.5V

Utility Port Output High Level VCC -

0.7

V IOH = -3.0 mA, VCC = 4.5V

Maximum Analog Port Source

Impedance

10k Ω Note 2

Maximum output current sunk by

any Utility Port signal

25 mA Note 3

Maximum output current sourced

by any Utility Port signal

25 mA Note 3

Capacitive Loading Analog and

Utility ports

55 pF

Configuration EEPROM write

cycles

100K 1M Write

Cycles

TA ≤ 85ºC

Configuration EEPROM

characteristic retention

40 Year Provided no other specifications are

violated

Operating Temperature Range 0 20 60 ºC

Storage Temperature Range -30 20 70 ºC

danjuliodesigns

Heart Rate Monitor Interface User Manual
 5

Notes

1. VSS is on-board ground, VCC is on-board voltage supply.

2. The maximum Analog Port Source impedance is required in order for the ADC sampling time to be met.

3. Total current sourced or sunk by all Utility Port signals must be less than 80 mA.

Mechanical Specifications

USB

2000

1850

100

100

4 x 100

All Dimensions in mil

Board Dimensions

danjuliodesigns

Heart Rate Monitor Interface User Manual
 6

Getting Started

Block Diagram

FT232RL

PIC

16F913

RMCM-01

SJ1

AIN3:0

P1:0

5V 3.3V

USB

5V

RX-I

TX-O

GND

4

2

8

RX/SDA

TX/SCL

RSTHR

TX

RX

Status

TX

RX

O
P
0

O
P
1

O
P
2

O
P
3

O
P
4

O
P
5

O
P
6

O
P
7

HRMI Block Diagram

Connections

Communication/Power
The HRMI receives power and data through a communication interface. It provides two interface connectors: USB and a

Logic-level header. Use of the two physical interfaces is mutually exclusive, only one can be in use at a time.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 7

O
P

0
O

P
1

O
P

2
O

P
3

O
P

4
O

P
5

O
P

6
O

P
7

SJ1

A
N

0

A
N

1

A
N

2

A
N

3

P
0

P
1

3
.3

V

5
V G
N

D

RX LED TX LED

USB

connector

Logic-Level

connector

Configuration Jumpers

Prototype Connections

Prototype Area

Status LED

5V

GND

RX-I / SDA

TX-O / SCL

Board Layout (Top View)

The HRMI communicates using either a serial interface or an I2C interface. The HRMI is configured at power-on reset to

use a particular interface with the OP0 - OP7 jumper block as described in section “Configuration Jumpers” of this

chapter. It communicates using a serial interface through either the USB connector or the Logic-level header. It

communicates using the I2C interface through the Logic-level header.

USB

A USB Mini-B connector allows quick connection to a host computer. The USB interface provides both power and a data

connection to the HRMI. The USB interface uses a FTDI FT232RL interface IC that exposes the HRMI as a serial device

to the host computer. FTDI provides royalty free drivers for Microsoft Windows, Apple Macintosh and Linux operating

systems.

USB Cable with Mini-B connector

danjuliodesigns

Heart Rate Monitor Interface User Manual
 8

To use the USB interface a jumper should be installed in the SJ1 position (factory default). The jumper in the SJ1 position

connects the TX line on the FTDI FT232RL interface IC to the HRMI micro-controller RX input (the micro-controller TX

output is permanently connected to the FT232RL RX input). No jumper should be installed in the OP0 position. This

configures the micro-controller to use a serial interface at power-on. The desired baud rate is configured on the OP1 and

OP2 jumper positions as described in section “Configuration Jumpers”.

A 4-pin header allows direct connection for access to Logic-level serial or I2C interfaces. It also provides Ground and +5

volt power input connections.

Label Function

5V +5 volt power input

GND Ground

RX-I / SDA HRMI Serial TTL RX input

HRMI I2C SDA (data)

TX-O / SCL HRMI Serial TTL TX output

HRMI I2C SCL (clock)

Logic-level header pin description

The HRMI is a serial device operating at baud rates from 2400 - 38400 when jumper OP0 is uninstalled. Data is

transmitted at TTL signal levels using 8 data bits, 1 stop bit and no parity (8N1). Jumper positions OP1 - OP2 configure

the baud rate. An example of interfacing the HRMI to an external microprocessor using a serial interface is shown below.

TX RX-I

RX TX-O

+5

GNDVSS

VDD

VCC

SJ1

O
P
0

O
P
1

O
P
2

Uninstalled

Baud

uP HRMI

Interfacing with a microprocessor through a TTL serial port

danjuliodesigns

Heart Rate Monitor Interface User Manual
 9

The HRMI is a 7-bit I2C slave operating at up to a 100 kHz data rate when jumper OP0 is installed. Jumper positions

OP1 - OP7 configure the I2C address (OP1 is LSb). The HRMI does not provide pull-up resistors on the I2C signals. It

may be necessary to add these externally. An example of interfacing the HRMI to an I2C device is shown below. More

than one I2C device can be wired in parallel observing signal line capacitance limits. Each device must respond to a

different address. For more information about I2C please see http://www.standardics.nxp.com/support/documents/i2c.

SDA RX-I / SDA

SCL TX-O / SCL

+5

GNDVSS

VDD

VCC

SJ1

O
P

0

O
P

1

O
P

2

Uninstalled

Address

uP HRMI

2 x 4.7 k

Installed

O
P

3

O
P

4

O
P

5

O
P

6

O
P

7

Interfacing with an I2C master

Jumper SJ1 should be removed when using the Logic-level 4-pin header (to disconnect the output port on the

FT232RL).

Configuration Jumpers
Configuration jumpers are used to configure the HRMI for operation. The jumpers are two exposed pads situated close

together. To install a jumper use a soldering iron to dab a small amount of solder that covers both pads. To remove a

jumper heat and remove the liquid solder by dragging the soldering iron tip quickly sideways across the pads to allow the

surface tension of the solder to separate it into two blobs, one on each pad. Alternatively use the soldering iron to melt

the solder and remove it using a small piece of solder-wick. Be careful not to apply to much heat or the solder pads may

pull up off of the board .

Configuration jumper SJ1 is used to connect the TX line on the FTDI FT232RL interface IC to the HRMI micro-controller

RX input when using the USB interface.

Configuration jumpers OP0 - OP7 configure the micro-controller communication interface at power-up. They are only

read at power-up. OP0 configures the interface type. Without a jumper across OP0 the micro-controller communicates

using a serial interface through either the Logic-level connector or USB connector. With a jumper across OP0 the micro-

controller communicates using the I2C protocol.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 10

http://www.standardics.nxp.com/support/documents/i2c
http://www.standardics.nxp.com/support/documents/i2c

With OP0 removed, OP1 and OP2 configure the baud rate. OP3 - OP7 are unused. The data protocol is 8 data bits, 1

stop bit and no parity (8N1). By default, with no jumpers installed, the baud rate is 9600 baud.

OP2 OP1 Baud Rate

installed installed 2400 baud

installed uninstalled 19200 baud

uninstalled installed 38400 baud

uninstalled uninstalled 9600 baud

Serial Interface (OP0 uninstalled)

With OP0 installed, OP1 - OP7 configure the 7-bit I2C slave address. OP1 is the least-significant bit. The maximum I2C

transfer rate is 100 kHz. By default with no jumpers (other than OP0) installed, the address is 127.

OP7 OP6 OP5 OP4 OP3 OP2 OP1 Address

installed installed installed installed installed installed installed 0

installed installed installed installed installed installed uninstalled 1

installed installed installed installed installed uninstalled installed 2

installed installed installed installed installed uninstalled uninstalled 3

... ...

uninstalled uninstalled uninstalled uninstalled uninstalled uninstalled uninstalled 127

I2C Interface (OP0 installed)

Status Indicators
The HRMI contains three status LEDs.

1. USB TX: Red LED that flashes for data transmitted from the host to the HRMI through the USB interface.

2. USB RX: Green LED that flashes for data transmitted from the HRMI to the host through the USB interface.

3. Status: Green LED that indicates the status of the HRMI. It is on when the HRMI is searching for valid heart beat data.

It blinks at the detected heart rate when a signal is acquired. For each heart beat it is on for 100 mSec.

Prototype Connections
The HRMI provides four analog inputs and two programmable digital input/outputs along with a small prototyping area to

include local circuitry. The analog inputs are connected to the HRMI micro-controller 8-bit ADC inputs. The

programmable digital input/output ports are connected to general purpose I/O pins on the HRMI micro-controller and

Note: The baud rate configured with jumpers OP1 and OP2 must match the baud rate selected by the

software running on the host computer.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 11

can be configured to be either a digital input or digital output and drive logic-level signals. Both +5 volts and +3.3 volts

are available.

Label Function

AN0 - AN3 Analog Input

P0 - P1 Programmable digital I/O (Utility port)

3.3V +3.3 volt supply rail. Power draw from this pin should

be limited to a maximum of 50 mA.

5V +5 volt supply rail. Connected to the 5V input

connector and to the USB power rail. Care must be

taken not to exceed USB current limits.

GND Board Ground

Prototype Signals

Orientation with Polar Transmitter
Polar transmitters use a magnetic field to transmit data to the RMCM-01 OEM receiver on the HRMI board. The

following rules help maximize signal transfer between a polar transmitter and the HRMI.

1. The maximum distance between the transmitter and HRMI should not exceed 80 cm.

2. The magnetic field is generated and detected using coils in the transmitter and receiver. The receiver coil should be in

parallel with the magnetic flow generated by the transmitter for maximum energy transfer as illustrated in the following

diagram.

USB

R
M
C
M
0
1

Transmitter

Strap

HRMI

Transmitter and receiver orientation

3. Metal casing around the receiver may form a Faraday cage around the receiver attenuating the signal. A metal cage

may also change the orientation of the magnetic field coming from the transmitter.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 12

4. Interference created by other electronic devices (such as motors, displays and power supplies) may interfere with the

transmission of information from the transmitter to receiver. Optimally the HRMI will be physically separated from such

sources of electro-magnetic energy.

Quick Test
The ability of the HRMI to detect a heart rate can be tested with just a Polar transmitter and 5 volt regulated power

supply.

Attach the HRMI to the 5 volt power supply and switch on the power supply. Alternatively plug the HRMI board into a

computer USB port. The HRMI Status LED should light.

Strap on the Polar transmitter and orient yourself near the HRMI board. Within 15 seconds the HRMI Status LED should

begin to flash indicating it has detected heart rate data from the transmitter. The Polar transmitter operation can be

verified with a Polar wristwatch receiver.

Quick Test with Host Computer
A computer with USB interface and terminal emulator program can access the HRMI. A USB cable and Polar transmitter

are required in addition to the computer. The basic steps are listed below. Some specific instructions for particular

platforms follow in subsequent sections.

1. Install a jumper at position SJ1. Make sure there are no jumpers installed on positions OP0 - OP7.

2. Before attaching the HRMI to the computer download and install the appropriate driver from the FTDI website: http://

www.ftdichip.com/FTDrivers.htm. The website contains the most current driver and instructions for each supported

operating system. Be sure to load the Virtual COM Port Driver (VCP) for this test instead of the D2XX driver. The VCP

driver makes the HRMI appear as a standard serial device (COM port).

3. Once the driver has been installed then attach the HRMI to the computer’s USB interface. The HRMI Status indicator

should light and blink when a heart beat is detected from a Polar transmitter.

4. Start a serial terminal emulator program on the host computer (for example, Hyperterminal on Microsoft Windows).

Make sure it is configured to use the USB-based communication port associated with the HRMI at 9600 baud, 8 bit

data, 1 stop bit and no parity. It is handy but not necessary to configure the terminal emulator program to echo back

characters typed locally and to append a linefeed character to received line ends. This allows display of the command

sent to the HRMI as well as the result returned by the HRMI.

5. Type the following command at the terminal emulator: “G1 <CR>”. That is the three characters “G” followed by “1”

followed by the carriage return (“Enter” key or control character for carriage return, CTRL-M). This should result in a

string such as the following.

1 15 63

where the first number, “1”, indicates the current heart rate algorithm mode, the second number, “15”, indicates the

current timer value and the third number, “63”, the current heart rate (your actual heart rate may vary). See the section

“Command List” for a detailed description of this and other commands.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 13

http://www.ftdichip.com/FTDrivers.htm
http://www.ftdichip.com/FTDrivers.htm
http://www.ftdichip.com/FTDrivers.htm
http://www.ftdichip.com/FTDrivers.htm

Quick Test using HyperTerminal (Microsoft Windows)
These examples are shown using Microsoft Windows XP™.

Use Device Manager to identify the COM port associated with the HRMI before starting HyperTerminal.

1. Plug the HRMI into a USB port (after the FTDI driver has been loaded). Verify the Status LED is lit. It may be helpful if

the HRMI is the only USB peripheral attached as other USB peripherals may also use a FTDI USB Interface IC.

2. Left-click on the My Computer icon on the desktop or Start menu and select “Properties”. This will bring up the

“System Properties” window.

3. Select “Device Manager” from the “System Properties” Window. The “Device Manager” window will appear as shown

in the following picture. Click the “+” symbol next to “Ports (COM & LPT)” to display a list of ports the system has

identified. A new COM port will be listed as shown (assuming the HRMI is the only USB peripheral attached using a

FTDI USB Interface IC).

Device Manager showing a USB COM port

danjuliodesigns

Heart Rate Monitor Interface User Manual
 14

Start and configure HyperTerminal (HyperTerminal is located in “All Programs -> Accessories -> Communications”).

Configuration consists of the following illustrated steps.

1. Create a new connection configuration, for example “com7_9600”, in the “Connection Description” dialogue box.

HyperTerminal can save this configuration to disk for use at a later time.

Configuring HyperTerminal with a new configuration

2. Select the COM port associated with the HRMI in the “Connect To” dialogue box.

Configuring HyperTerminal to use the USB COM port

danjuliodesigns

Heart Rate Monitor Interface User Manual
 15

3. Configure the correct serial port characteristics in the “Properties” dialogue box. Be sure that flow control is set to

“None”.

Configuring HyperTerminal for 9600 baud, 8N1

4. Select “Properties” for HyperTerminal (File->Properties) then click on “ASCII Setup…” to bring up the “ASCII Setup”

dialogue box. Click the “Echo typed characters locally” checkbox to cause HyperTerminal to echo the characters

transmitted to the HRMI on the screen. Click the “Send line ends with line feeds” and “Append line feeds to incoming

line ends” checkboxes to cause HyperTerminal to put each text string on a separate line for easy viewing.

Configuring HyperTerminal to echo characters

danjuliodesigns

Heart Rate Monitor Interface User Manual
 16

Send commands to the HRMI followed by the Carriage Return character (CTRL-M) and observe the results. See the

section “Command List” for a detailed description of each command.

HRMI Commands and Responses

danjuliodesigns

Heart Rate Monitor Interface User Manual
 17

Quick Test using QuickTerm (Apple Mac OS X)
QuickTerm is a simple universal terminal application compatible with Mac OS X 10.2 - 10.5. It can be found at the

developer’s website http://www.gelhaus.net/cgi-bin/showpage.py?cocoa/+quickterm.html or through the version tracker

website (http://www.versiontracker.com).

Currently QuickTerm (version 1.01) is limited to a maximum of 19200 baud. The HRMI must be configured to work at

19200 baud or less. This example uses the default baud rate of 9600 baud.

1. Plug the HRMI into a USB port (after the FTDI driver has been loaded). Verify the Status LED is lit. It may be helpful if

the HRMI is the only USB peripheral attached as other USB peripherals may also use a FTDI USB Interface IC.

2. Start QuickTerm and configure the serial port by clicking on the “Port settings…”. Select the appropriate device from

the “Port” pull-down menu. The entry will have the form “/dev/cu.usbserial-XXXXXXXX” where the string “XXXXXXXX”

is unique to each FTDI FT232RL IC. Select 9600 baud. Make sure there is no flow control enabled and select the

“Local echo” checkbox.

Example QuickTerm Port Settings

danjuliodesigns

Heart Rate Monitor Interface User Manual
 18

http://www.gelhaus.net/cgi-bin/showpage.py?cocoa/+quickterm.html
http://www.gelhaus.net/cgi-bin/showpage.py?cocoa/+quickterm.html
http://www.versiontracker.com
http://www.versiontracker.com

3. Click the “Connect” button and send commands to the HRMI followed by the Carriage Return character (CTRL-M) and

observe the results. See the section “Command List” for a detailed description of each command.

HRMI Commands and Responses

Note: Do not disconnect the HRMI from the Macintosh USB port while any application is using the serial port

(the serial port is open). This may cause the system to freeze or crash.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 19

Operation

Host Interface Operation
The HRMI is a slave device. It responds to commands issued to it from a host controller. It interprets commands from

either a serial or I2C interface. Both interfaces use the same physical I/O ports on the HRMI micro-controller. The

interface type is selected by sampling jumper OP0 at power-on. The interface type persists until the next power-on reset.

The HRMI is capable of receiving commands 250 mSec after being powered up.

Unknown or illegal commands are ignored. Some commands cause the HRMI to generate a response which it transmits

back to the host controller after processing the command.

Commands are 1-byte (8-bits in length). They have ASCII representations that are an abbreviation of their function.

Some commands are followed by an argument representing a single 8-bit numeric quantity.

Responses consist of one or more numeric values.

Commands and responses are encoded slightly differently for serial and I2C communication.

Serial Interface (USB or Logic-level physical interface)
Commands and arguments sent through the serial interface are encoded as ASCII values. Commands are a single ASCII

character with values between ‘A’ and ‘Z’. Arguments are one to three ASCII numbers “0” through “255” representing an

8-bit value. Commands are issued in Command Sequences. A Command Sequence consists of the command value

followed by any required argument terminated with the Carriage Return character (0x0D). Space characters may be

included between the command and argument or between the argument and the Carriage Return (<CR>). Any other

characters or additional arguments cause the HRMI to ignore the Command Sequence up to the next Carriage Return.

Responses consist of ASCII numbers (“0” through “255”) separated by spaces terminated with the Carriage Return

character.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 20

For example the ASCII character ‘G’ is used for the Get Heart Rate command. It is always followed by an argument with

a value of 0 - 32 commanding the HRMI to return 0 - 32 heart rate values from its heart rate history buffer. The HRMI

also includes two status bytes prior to the requested heart rate data.

Sending the command

G3<CR>

or

G 3 <CR>

generates a response with the form

1 25 63 64 67 <CR>

where the values “1” and “25” are the status bytes (explained later in this chapter) and the values “63”, “64” and “67” are

the requested heart rate values (in beats-per-minute) from the heart rate history buffer.

The HRMI can buffer multiple serial commands and arguments in an internal 16-byte FIFO. It processes one command

at a time (including transmission of a required response). The HRMI will continue to push new commands into the FIFO

while it is processing a command. It will drop commands when the FIFO is full. Care must be taken when sending

commands immediately following a Get Heart Rate command and before receiving the response from the Get Heart Rate

command so as not to overflow the FIFO.

I2C Interface
The HRMI implements a simple 7-bit slave I2C device. It is configured with any 7-bit I2C address on the OP1-7

configuration jumpers at power-on. The HRMI implements only the mandatory I2C slave functionality described in the

NXP Semiconductor document “UM10204 I2C-bus specification and user manual”. These functions include START

condition, STOP condition, Acknowledge and 7-bit slave address. It does not support General Call address, 10-bit slave

address, Software reset or Device ID. The maximum bit rate is 100 kHz.

Commands and arguments are encoded as 8-bit binary values. Command Sequences consist of 1- or 2-byte I2C write

sequences (the command byte followed by any required argument byte) followed by the STOP condition.

The host controller must issue a read of the expected number of data bytes for commands that generate a response.

The read should be issued following the write and before subsequent commands. The HRMI stretches the clock on the

SCL line during the read while it fetches data bytes internally to satisfy the read. The HRMI will return the value 0x00 for

host controller I2C reads that request more data than the is contained in the response or for reads without a prior

command.

The example shown in the Serial Interface section above would consist of the following bytes transmitted on the I2C

interface for the command.

<0x47><0x03>

The following response data would be read (the host controller must read 5 bytes for this example).

<0x01><0x19><0x3F><0x40><0x43>

The HRMI can buffer multiple I2C commands and arguments in an internal 16-byte FIFO. However it can only process

one command at a time that requires a response. This is because it resets the internal buffer it uses to hold responses

danjuliodesigns

Heart Rate Monitor Interface User Manual
 21

each time a command is received from the I2C interface. The host controller must execute a read and obtain the

response data for any command that generates a response before issuing another command.

Heart Rate Monitor Algorithms
The HRMI computes the heart rate by measuring the time from one heart beat to the next as received from the Polar

transmitter. The transmitter sends a pulse for each heart beat it detects. During normal operation the data from the Polar

transmitter may contain a significant amount of spurious information. For example a slightly loose transmitter strap may

generate extra pulse information each time the strap contacts are jostled (as can occur frequently when running). Other

devices can also generate electromagnetic pulses that appear to the receiver as heart rate data.

The HRMI allows access to the received data in either raw or averaged form (Raw or Average mode). In Raw mode the

instantaneous heart rate based on each pulse is calculated and stored in a 32-entry history buffer. Raw mode data is

useful for observing dynamic heart response on a beat-by-beat basis although the data may include erroneous heart rate

values due to spurious pulses. It is the responsibility of software running on the host controller or user analysis to identify

possibly spurious heart rate values in raw data.

In Average mode the instantaneous heart rate data is averaged and the average heart rate, computed once per second,

is pushed into the 32-entry history buffer. The averaging algorithm identifies and ignores spurious heart rate data when

generating the average by using a pulse rate discriminator and a dual set of averaging buffers (a primary buffer and an

acquisition buffer). The acquisition buffer is used to determine the initial average. Once an average has been computed

the primary buffer is used to maintain calculations of the average. The primary buffer is dynamically sized from 6 to 16

entries using more entries for higher average heart rates to prevent slightly spurious values from affecting the average too

much while allowing the average to be responsive to quickly changing heart rates. Once an average has been computed

the acquisition buffer is used when spurious values too large for the primary averaging buffer are detected. The

acquisition buffer requires a certain number of values within a range before determining that there is a new average. The

discriminator is used to detect spurious values for both the primary and acquisition buffer.

The algorithm is selected from a built-in EEPROM at power-up. The algorithm may also be changed while the HRMI is

running by issuing a command. From the factory the power-up value configures the HRMI to use the Averaged

algorithm. The power-up value may also be changed by issuing a command to the HRMI.

In raw mode the current instantaneous heart rate value is pushed into the heart rate history buffer each time a pulse is

received. In average mode the current average is pushed into the heart rate history buffer each second while non-

spurious data is being received. The history buffer is not loaded in average mode while spurious data is being received.

The last entry pushed into the history buffer represents the most recent accurate average heart rate. The HRMI clears

the heart rate history buffer when there has been a loss-of-signal from the transmitter for more than fifteen seconds. It

also clears the heart rate history buffer if more than 64 spurious pulse values are received. When the heart rate history

buffer has been cleared or before any values have been loaded the HRMI will generate responses with the value of 0 for

the heart rate.

The status indicator LED is pulsed on for 100 mSec when a pulse is received. It is set to a solid on condition when no

pulse has been received in more than 1792 mSec setting a lower bound to detectable heart rate values at 34 beats-per-

minute (bpm). The upper bound to detectable heart rate values is 239 bpm.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 22

Command List
The HRMI implements the following commands, summarized in the following table and described more fully in the

following sections.

Command ASCII

Command

Value

Hex

Command

Value

Command

Argument

Response Description

Read Analog

Input

A 0x41 Channel 0-3 8-bit value Trigger the ADC to read the

specified analog input.

Set Utility Port

Directions

D 0x44 5-bit direction

mask

- Set the direction, either input or

output, of each Utility port pin.

Get Heart Rate

Data

G 0x47 Number of

heart rate

history buffer

entries 0-32

2 - 34 8-bit

values

Get the specified number of heart

rate values and status information

from the heart rate history buffer.

Get Utility Port I 0x49 - 5-bit value Get the current value of each

Utility port pin.

Get Mode M 0x4D - 1 1-bit value

followed by 1 5-

bit value

Get the current heart rate

algorithm and Utility port direction.

Set Utility Port O 0x4F 5-bit value - Set the value of each Utility port

pin.

Set Mode S 0x53 3-bit mode - Set the heart rate algorithm and

optionally set the power-on

defaults for heart rate algorithm

and Utility port direction and value.

Get Version V 0x56 - 2 8-bit values Get information about the

firmware running in the HRMI.

HRMI Command List

danjuliodesigns

Heart Rate Monitor Interface User Manual
 23

Read Analog Input

Description

Trigger the HRMI to read the analog voltage level on one of the analog inputs and return the value as an 8-bit number.

Serial command

A<N><CR>

I2C command

<0x41><N>

Argument

<N> specifies the analog input to read, 0-3. Other values cause the command to be ignored.

Serial response

Returns 1 8-bit byte with the ADC value encoded as an ASCII string “0 ” to “255 ” followed by <CR>.

I2C response

Read 1 8-bit byte with the ADC value.

Notes

1. The HRMI delays 5 uSec after configuring the specified analog input before triggering the ADC to allow the sampling

capacitor in the ADC time to charge. The maximum input impedance seen by any analog input pin should be less

than 10 kΩ to allow the capacitor to fully charge in this time.

2. The internal micro-controller ADC is referenced to the 5 volt power rail which means the analog inputs are scaled

relative to the power rail. It is possible to use a precision reference voltage by attaching the voltage reference to one of

the analog inputs. Voltage levels attached to other analog inputs can be scaled by the voltage reference by dividing

the result read from the desired analog input by the result read from the reference analog input.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 24

Set Utility Port Directions

Description

Set the I/O direction of each Utility port digital pin. Pins can either be an input or an output.

Serial command

D<N><CR>

I2C command

<0x44><N>

Argument

<N> is a 5-bit mask (bits 4:0) specifying the direction of each Utility port pin. A value of 0 in a bit position makes that bit

an output, a value of 1 in a bit position makes that bit an input. Data in bit positions 7:5 is ignored. Legal values for the

argument are from 0 to 31.

Serial response

n/a

I2C response

n/a

Notes

1. The HRMI firmware and micro-controller support 5 utility port pins, P0-P4. This implementation makes P0 and P1

available at the prototype area. P2 - P4 are available at the I/O pins of the micro-controller (pins 13-15). There are no

additional PCB pad area so extreme care must be taken if attaching a wire or other device lead to these pins.

2. The Utility port pin power-on default direction is set at the factory to be all outputs with an output value of 0.

3. Switching a Utility port pin from input to output will cause it to reflect the most recent value sampled as an input.

Note: Damage to the HRMI caused by soldering to the additional utility port pins is not covered under

warranty.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 25

Get Heart Rate Data

Description

Request 0 - 32 heart rate samples from the heart rate history buffer.

Serial command

G<N><CR>

I2C command

<0x47><N>

Argument

<N> specifies the number of heart rate samples to return. The value is limited by the HRMI to a maximum of 32.

Serial response

Returns <STATUS> <COUNT> <HR1> <HR2> … <HRN> encoded as ASCII strings “0 ” to “255 ” followed by <CR>.

I2C response

Read 2+N 8-bit bytes: <STATUS><COUNT><HR1><HR2>...<HRN>

Notes

<STATUS> byte

7:4: Reserved. Will read as 0

3: Bad Data. When set to 1 indicates that the heart rate history buffer was cleared because more than 64 consecutive

spurious heart beat pulses have been received. A spurious heart beat pulse is defined as one that is more than 25%

greater than or less than the current average or the average in the acquisition buffer. Set to 0 when the heart rate

history buffer is collecting heart rate values.

2: Reacquiring Series. Set to 1 when the most current heart beat pulse was more than 25% greater than or less than

the current average and is being included in the acquisition buffer. Set to 0 when the most current heart beat pulse

was added to the current average value.

1: No Data. Set to 1 when no heart beat signal has been detected within the last 1792 mSec. Set to 0 when at least

two consecutive heart beats have been detected.

0: Algorithm mode. Set to 1 for average mode, set to 0 for raw mode.

<COUNT> byte indicates the current second in average mode and the current sample count in raw mode modulo 256 of

the last heart rate value entered into the heart rate history buffer (<HR1>). It is designed to be used when multiple values

are read periodically. It allows software on the host system to identify the start of new data in each group of values read

from the HRMI.

<HR1> is the most recent heart rate value in the heart rate history buffer.

<HR2> is the second most recent heart rate value in the heart rate history buffer and so on.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 26

Get Utility Port

Description

Read the current value of the Utility port.

Serial command

I<CR>

I2C command

<0x49>

Argument

n/a

Serial response

Returns 1 5-bit number with the Utility port value encoded as an ASCII string “0 ” to “31 ” followed by <CR>.

I2C response

Read 1 8-bit byte with the Utility port value in bits 4:0. Bits 7:5 are 0.

Notes

1. The value returned is the value for each Utility port bit regardless of its direction. Utility port pins that are configured as

inputs return the value on the input. Utility port pins that are configured as outputs return the value that is being driven.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 27

Get Mode

Description

Request the current heart rate algorithm and Utility port direction.

Serial command

M<CR>

I2C command

<0x4D>

Argument

n/a

Serial response

Returns <ALG> with the heart rate algorithm encoded as an ASCII string “0 ” to “1 ” followed by <DIR> with the current

Utility port direction encoded as an ASCII string “0 “ to “31 “ followed by <CR>.

I2C response

Read 2 8-bit bytes: <ALG><DIR>.

Notes

<ALG> byte

7:1: Reserved. Set to 0.

0: Algorithm. 1 = Averaged, 0 = Raw mode.

<DIR> byte

7:5: Reserved. Set to 0.

4:0: Utility Port Direction: A 1 in a bit position signifies that bit is an input, a 0 in a bit position signifies that bit is an

output.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 28

Set Utility Port

Description

Set the value of Utility port output pins.

Serial command

O<N><CR>

I2C command

<0x4F><N>

Argument

<N> is a 5-bit mask (bits 4:0) specifying the value for each Utility port output pin. Legal values for the argument are from

0 to 31.

Serial response

n/a

I2C response

n/a

Notes

1. Utility port pins defined as inputs are unaffected by data from this command.

2. The Utility port pin power-on default output value is set at the factory to all 0s.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 29

Set Mode

Description

Set the heart rate algorithm mode and optionally store it and/or the current Utility port direction and output values to

internal EEPROM to be used at the next power-up reset.

Serial command

S<N><CR>

I2C command

<0x53><N>

Argument

<N> is a 3-bit mask (bits 2:0) specifying the algorithm mode and if it and/or the current Utility port direction and output

values should be stored to EEPROM. Data in bit positions 7:3 is ignored. Legal values for the argument are from 0 to 7.

2: Set to 1 to trigger the HRMI to store the current Utility port direction and output values to EEPROM

1: Set to 1 to trigger the HRMI to store the heart rate algorithm (specified by bit 0) to EEPROM.

0: Algorithm. Set to 1 for average mode, set to 0 for raw mode.

Serial response

n/a

I2C response

n/a

Notes

1. This command is used to configure the power-on state of the HRMI.

2. It takes a maximum of 6 mSec for the HRMI to store each value (Utility port direction, Utility port output values and/or

heart rate algorithm) to internal EEPROM. During this time the HRMI does not process other commands although it

continues heart rate data processing.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 30

Get Version

Description

Request information about the firmware running in the HRMI.

Serial command

V<CR>

I2C command

<0x56>

Argument

n/a

Serial response

Returns <TYPE> <VERSION> encoded as ASCII strings “0 ” to “255 ” followed by <CR>.

I2C response

Read 2 8-bit bytes: <TYPE><VERSION>.

Notes

<TYPE> byte specifies the firmware type. For the HRMI this byte value is 0x01. Allows software running on a host

controller to identify the device it is communicating with.

<VERSION> byte specifies the current HRMI firmware version. The firmware version is incremented when firmware

changes are made to the HRMI that are externally visible to software running on the host controller.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 31

Appendix A: Troubleshooting

Symptom Possible Causes Action

No status LED No Power Power through USB: Make sure that the

USB port is enabled to supply power. A

short or excessive current draw on an

USB port may cause the host computer

to shut down the USB port.

Power through Logic-level connector:

Make sure the input voltage is between

4.5 and 5.5 volts, that the polarity is

correct and that the power supply can

supply enough current for the HRMI and

any additional powered circuitry.

Status LED does not blink No Heart rate signal Polar Transmitter battery is dead: Test if

the signal can be received with a Polar

wristwatch.

Poor Positioning: If a Polar wristwatch

receives the signal then attempt to

reposition the transmitter closer and

parallel with the RMCM-01 OEM receiver

on the HRMI PCB.

No communication through

the USB interface.

Software on the host computer has

opened the wrong serial device.

Make sure that the host software is

opening the device associated with the

HRMI. The RX LED should flash when

commands are transmitted to the HRMI.

Jumper SJ1 not installed Make sure jumper SJ1 is installed.

Incorrect serial interface configuration Make sure jumper OP0 is not installed

and make sure jumpers OP1-2 are

configured for the correct baud rate.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 32

Symptom Possible Causes Action

No communication through

the Logic-level serial

interface.

Jumper SJ1 installed Make sure jumper SJ1 is not installed.

Incorrect serial interface configuration Make sure jumper OP0 is not installed

and make sure jumpers OP1-2 are

configured for the correct baud rate.

Garbage data through the

USB or Logic-level serial

interface.

Incorrect baud rate Make sure jumpers OP1-2 are configured

for the same baud rate as the host

computer.

No communication through

the Logic-level I2C interface.

Incorrect I2C interface configuration Make sure jumper SJ1 is not installed,

jumper OP0 is installed and jumpers

OP1-7 are configured with the address

being used by the I2C master.

Missing pull-up resistors Make sure the I2C signals have the proper

pull-ups. Some controllers include pull-

ups in their I2C interface, otherwise pull-

up the I2C signals with 4.7 kΩ resistors.

Unsupported I2C commands Make sure the host controller issues

simple I2C read and writes with 7-bit

addressing. Make sure the writes are for

the command and any required argument

only. Make sure the reads are for exactly

the expected number of response data

bytes.

Receive unexpected 0x00

when reading the I2C

interface.

Host controller is performing an I2C read

that is larger than the data returned by the

previous command.

Make sure the I2C read only reads the

correct number of bytes.

No response for commands

sent through the serial

interface.

Extraneous characters in command (for

example a <LF> character before the

<CR> character).

Make sure the only characters being sent

to the HRMI include the ASCII command,

optional space characters, numeric

characters and the <CR> termination

character.

danjuliodesigns

Heart Rate Monitor Interface User Manual
 33

Appendix B: Code Examples

The basic process for communicating with the HRMI from a host controller consists of the following steps.

1. Open the serial/I2C port

2. Configure the serial/I2C port

3. Send a command

4. Read a response

Unix/Mac OS X using the serial interface
Many PC-based Unix/Linux systems have a built-in serial port that can connect to the HRMI through the Logic-level

interface with an appropriate serial-to-TTL converter chip such as the Maxim MAX3222E or ST Microelectronics ST202E.

Systems with a USB port can communicate directly with the HRMI after downloading and installing a driver from FTDI.

The following C-program illustrates a simple command/response. You will need to change the device string for your

specific serial port device entry.

/*
 * Demonstration program for communicating with the HRMI over a serial interface
 */

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <paths.h>
#include <termios.h>
#include <sysexits.h>
#include <sys/param.h>
#include <sys/select.h>

// Define a constant specifying the largest response string we could get from the HRMI
#define MAX_RSP_CHARS 140

// Global to hold original serial port attributes
static struct termios gOriginalTTYAttrs;

//
// OpenSerialPort: Routine to open and configure the serial prot
//

danjuliodesigns

Heart Rate Monitor Interface User Manual
 34

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.st.com/stonline/
http://www.st.com/stonline/
http://www.ftdichip.com/
http://www.ftdichip.com/

static int OpenSerialPort(const char *deviceFilePath)
{
 // variables
 int fd = -1; // file descriptor for serial port
 struct termios options; // serial port configuration options

 // Open the serial port
 if ((fd = open(deviceFilePath, O_RDWR | O_NOCTTY)) == -1) {
 printf("Error opening serial port %s - %s(%d)\n",
 deviceFilePath, strerror(errno), errno);
 return(-1);
 }

 // Prevent other processes from opening the serial port
 if (ioctl(fd, TIOCEXCL) == -1) {
 printf("Error setting TIOCEXCL on %s - %s(%d)\n",
 deviceFilePath, strerror(errno), errno);
 return(-1);
 }

 // Get the serial port current options and save them to restore on exit
 if (tcgetattr(fd, &gOriginalTTYAttrs) == -1) {
 printf("Error getting tty attributes %s - %s(%d)\n",
 deviceFilePath, strerror(errno), errno);
 return(-1);
 }

 // Configure the serial port
 options = gOriginalTTYAttrs;
 // Set raw input (non-canonical) mode, with reads blocking until either a
 // single character has been received or a one second timeout expires
 cfmakeraw(&options);
 options.c_cc[VMIN] = 1;
 options.c_cc[VTIME] = 10;
 // Set the baud rate and word length
 cfsetspeed(&options, B9600);
 options.c_cflag |= (CS8);
 // Cause the new options to take effect immediately
 if (tcsetattr(fd, TCSANOW, &options) == -1) {
 printf("Error setting tty attributes!\n");
 return(-1);
 }

 return(fd);
}

//
// CloseSerialPort: Close our connection and restore the original settings
//
void CloseSerialPort(int fd)
{
 // Block until all written output has been sent from the device
 if (tcdrain(fd) == -1) {
 printf("Error waiting for drain - %s(%d)\n", strerror(errno), errno);
 }

 // Reset the serial port back to the state in which we found it
 if (tcsetattr(fd, TCSANOW, &gOriginalTTYAttrs) == -1) {
 printf("Error restoring tty attributes - %s(%d)\n", strerror(errno), errno);
 }

 // Close the port

danjuliodesigns

Heart Rate Monitor Interface User Manual
 35

 close(fd);
}
//
// SendGetHeartRate: Function to send a command to get the number of heart rate values
// specified in NumEntries
//
// Returns 1 for success, 0 for failure
//
int SendGetHeartRate(int fd, int NumEntries)
{
 char SendCommand[8]; // Array sized to hold the largest command string
 int CmdLength; // Number of characters in the command string

 // Validate NumEntries
 if (NumEntries < 0)
 NumEntries = 0;
 else if (NumEntries > 32)
 NumEntries = 32;

 // Build the command string
 // Note: "\015" is the carriage return character
 CmdLength = sprintf(SendCommand, "G%0d\015", NumEntries);

 // Send the command string
 return(write(fd, SendCommand, CmdLength) == CmdLength);
}

//
// GetResponseString: Function to read a response string back from the HRMI
//
int GetResponseString(int fd, char* ResponseString)
{
 char b[2];
 int i = 0;

 do {
 int n = read(fd, b, 1); // read a char at a time
 if (n == -1)
 return(-1); // read failed
 if (n == 0) {
 usleep(10 * 1000); // wait 10 msec before trying again
 continue;
 }

 ResponseString[i] = b[0]; // store the character
 i++;

 // repeat until we see the <CR> character or exceed the buffer
 } while ((b[0] != 0x0D) && (i < MAX_RSP_CHARS));

 ResponseString[i-1] = 0; // null terminate the string (replace the
<CR>)
 return(0);
}

int main()
{
 int sfd; // serial port file descriptor
 int i = 0; // loop counter
 char RspBytes[MAX_RSP_CHARS]; // Response string

danjuliodesigns

Heart Rate Monitor Interface User Manual
 36

 int numBytes;

 // Open the serial port device associated with the HRMI
 if ((sfd = OpenSerialPort("/dev/cu.usbserial-A9003PDh")) == -1) {
 return(-1);
 }

 // Send a series of Get Heart Rate commands, each time requesting more history buffer
 // entries
 while (i++ < 33) {
 if (SendGetHeartRate(sfd, i) == 0) {
 printf("Error: SendGetHeartRate failed!\n");
 break;
 }

 if (GetResponseString(sfd, RspBytes) == -1) {
 printf("Error: GetResponseString failed!\n");
 break;
 } else {
 printf("Request %2d => %s\n", i, RspBytes);
 }

 sleep(1);
 }

 CloseSerialPort(sfd);
}

danjuliodesigns

Heart Rate Monitor Interface User Manual
 37

Processing using the serial interface
The Processing language and environment includes a Serial library that makes it easy to interface Processing programs

with the HRMI.

The following Processing program illustrates a simple command/response. This program differs from the Unix program

in that we process a received buffer full of ASCII characters manually after we receive it from the HRMI.

//
// Demonstration program for communicating with the HRMI over a serial interface
//

// Include the serial library
import processing.serial.*;

// Variable declaration
Serial port; // The serial port
byte[] rspCharArray = new byte[32]; // Where we'll put the raw data read from the HRMI
int[] rspArgArray = new int[3]; // Where we'll put the converted response values
int validData = 0;
int CR = 13; // <CR> constant

void setup() {
 // Open a specific serial device (this will change for each HRMI device)
 port = new Serial(this, "/dev/tty.usbserial-A9003PDh", 9600);

 // Setup the serialEvent to be called when we receive complete response
 // packets from the HRMI device
 port.bufferUntil(CR);

}

void draw() {

 // Send a command to get a single heart rate value
 validData = 0;
 port.write('G');
 port.write('1');
 port.write(CR);

 // Wait for a response from the HRMI device
 while (validData == 0) {
 delay(1000); // Delay 1 second between checks
 }

 // Display mode, count and heartrate
 if ((rspArgArray[0] & 0x01) == 0x01)
 print("Averaged mode ");
 else
 print("Raw mode ");
 print(rspArgArray[1]); print(" "); // Count
 println(rspArgArray[2]); // Heart rate
}

// Catch the event from the serial interface. Make sure there is
// actually data to read before attempting to do any processing.
void serialEvent(Serial port) {
 if (port.readBytesUntil(CR, rspCharArray) != 0) {
 // Read bytes until we get to the end of the packet converting
 // each ASCII digit into a number. We make use of the space
 // character between sets of digits to delimit numbers.
 // Argument 0: Status Flags

danjuliodesigns

Heart Rate Monitor Interface User Manual
 38

http://www.processing.org
http://www.processing.org
http://www.processing.org/reference/libraries/serial/index.html
http://www.processing.org/reference/libraries/serial/index.html

 // Argument 1: Second Count
 // Argument 2: Heartrate
 //
 int ArgIndex = 0;
 int CharIndex = 0;
 for (int i=0; i<3; i++) rspArgArray[i] = 0;
 while (rspCharArray[CharIndex] != CR) {
 if (rspCharArray[CharIndex] != ((byte) ' ')) {
 rspArgArray[ArgIndex] = (rspArgArray[ArgIndex]*10) + (rspCharArray[CharIndex] -
((byte) '0'));
 } else {
 ArgIndex++;
 }
 CharIndex++;
 }
 validData = 1;
 }
}

danjuliodesigns

Heart Rate Monitor Interface User Manual
 39

Arduino using I2C
The Arduino and related small hardware controllers running the Wiring language include a library called Wire that makes it

easy to interface with a HRMI through the I2C port. (They can also communicate with the HRMI through a Serial

interface).

The following Processing program illustrates a simple command/response using the I2C interface. It consists of two files.

The first file, arduino_simple.pde, is the main program. The second file, hrmi_funcs.h, contains the I2C access routines.

arduino_simple.pde

/*
 * Simple Arduino-based program to read values from the HRMI using the I2C interface
 *
 * Connections
 * Arduino HRMI
 * -----------------------
 * +5 +5 (Power for the HRMI)
 * GND GND
 * Analog In 5 TX (I2C SCL) (recommend 4.7 kOhm pullup)
 * Analog In 4 RX (I2C SDA) (recommend 4.7 kOhm pullup)
 *
 *
 * Note: By default the Arduino Wiring library is limited to a maximum
 * I2C read of 32 bytes. The Get Heartrate command is limited
 * by this code to a maximum of 30 values (for a max I2C packet
 * of 32 bytes).
 *
 */

#include "Wire.h"
#include "hrmi_funcs.h"

/*
 * Configuration Information
 *
 * Change these constants to match your specific configuration. These
 * values are the factory default (no OP1-OP7 jumpers installed). Jumper
 * OP0 should be installed and jumper SJ1 removed.
 *
 * HRMI_HOST_BAUDRATE should be set to the baudrate the host will use
 * to communicate with the Arduino over the serial interface.
 *
 * HRMI_I2C_ADDR should be set to the I2C address the HRMI is configured
 * with.
 */
#define HRMI_HOST_BAUDRATE 9600
#define HRMI_I2C_ADDR 127

/*
 * Program constants
 */
#define MAX_IN_BUFFSIZE 16

/*
 * Global variables
 */
char serInStr[MAX_IN_BUFFSIZE]; // Serial input string array
int numEntries = 0; // Number of HR values to request
int numRspBytes; // Number of Response bytes to read

danjuliodesigns

Heart Rate Monitor Interface User Manual
 40

http://www.arduino.cc/
http://www.arduino.cc/
http://www.freeduino.org/freeduino_open_designs.html
http://www.freeduino.org/freeduino_open_designs.html
http://www.sparkfun.com/commerce/product_info.php?products_id=8465
http://www.sparkfun.com/commerce/product_info.php?products_id=8465
http://moderndevice.com/index.shtml
http://moderndevice.com/index.shtml
http://wiring.org.co/learning/libraries/Wire/index.html
http://wiring.org.co/learning/libraries/Wire/index.html
http://wiring.org.co/learning/libraries/Serial/index.html
http://wiring.org.co/learning/libraries/Serial/index.html

byte i2cRspArray[34];
 // I2C response array, sized to read 32 HR values
byte hrmi_addr = HRMI_I2C_ADDR; // I2C address to use

/*
 * Arduino initialization code segment
 */
void setup()
{
 // Initialize the I2C communication
 hrmi_open();

 // Initialize the serial interface
 Serial.begin(HRMI_HOST_BAUDRATE);
}

/*
 * Arduino main code loop
 */
void loop()
{
 // Request a set of heart rate values
 hrmiCmdArg(hrmi_addr, 'G', (byte) numEntries);

 // Get the response from the HRMI
 numRspBytes = numEntries + 2;
 if (hrmiGetData(hrmi_addr, numRspBytes, i2cRspArray) != -1) {
 // send the results back on the serial interface in ASCII form
 Serial.print("Request "); Serial.print(numEntries); Serial.print(" => ");
 for (int i=0; i<numRspBytes; i++) {
 Serial.print(i2cRspArray[i], DEC);
 Serial.print(" ");
 }
 Serial.println();
 }

 // Setup to do it again
 if (++numEntries > 30)
 numEntries = 0;
 delay(1000); // Delay 1 second between commands
}

hrmi_funcs.h

/*
 * hrmi_funcs.h
 *
 * Arduino library to communicate with a HRMI using I2C
 *
 */

#include <Wire.h>

/*
 * hrmi_open: Initialize the I2C library
 * This routine must be called before attempting to communicate with I2C
 */
static void hrmi_open()
{

danjuliodesigns

Heart Rate Monitor Interface User Manual
 41

 Wire.begin();
}

/*
 * hrmiCmdArg: Send a Command followed by a single Argument
 */
static void hrmiCmdArg(byte addr, byte cmd, byte arg)
{
 Wire.beginTransmission(addr);
 Wire.send(cmd);
 Wire.send(arg);
 Wire.endTransmission();
}

/*
 * hrmiCmd: Send a Command with no argument
 */
static void hrmiCmd(byte addr, byte cmd)
{
 Wire.beginTransmission(addr);
 Wire.send(cmd);
 Wire.endTransmission();
}

/*
 * hrmiGetData: Get the specified number of data bytes from the HRMI into
 * an array.
 */
static int hrmiGetData(byte addr, byte numBytes, byte* dataArray)
{
 Wire.requestFrom(addr, numBytes);
 if (Wire.available()) {
 for (int i=0; i<numBytes; i++)
 dataArray[i] = Wire.receive();
 return(0);
 }
 return(-1);
}

danjuliodesigns

Heart Rate Monitor Interface User Manual
 42

Appendix C: Schematic

danjuliodesigns

Heart Rate Monitor Interface User Manual
 43

