## Is Now Part of # ON Semiconductor® To learn more about ON Semiconductor, please visit our website at <a href="https://www.onsemi.com">www.onsemi.com</a> ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo November 2013 # FDS8958B # Dual N & P-Channel PowerTrench® MOSFET Q1-N-Channel: 30 V, 6.4 A, 26 m $\Omega$ Q2-P-Channel: -30 V, -4.5 A, 51 m $\Omega$ ### **Features** Q1: N-Channel - Max $r_{DS(on)}$ = 26 m $\Omega$ at $V_{GS}$ = 10 V, $I_D$ = 6.4 A - Max $r_{DS(on)}$ = 39 m $\Omega$ at $V_{GS}$ = 4.5 V, $I_D$ = 5.2 A Q2: P-Channel - Max $r_{DS(on)}$ = 51 m $\Omega$ at $V_{GS}$ = -10 V, $I_D$ = -4.5 A - Max $r_{DS(on)}$ = 80 m $\Omega$ at $V_{GS}$ = -4.5 V, $I_D$ = -3.3 A - HBM ESD protection level > 3.5 kV (Note 3) - RoHS Compliant ## **General Description** These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor's advanced PowerTrench® process that has been especially tailored to minimize on-state resistan ce and yet maintain superior switching performance. These devices are well suite d for low voltage and battery powered applications where low in-line power loss and fast switching are required. ## **Application** - DC-DC Conversion - BLU and motor drive inverter # **MOSFET Maximum Ratings** $T_C = 25 \, ^{\circ}\text{C}$ unless otherwise noted | Symbol | Parameter | | | Q1 | Q2 | Units | |-----------------------------------|--------------------------------------------------|------------------------|-----------|--------|------|-------| | V <sub>DS</sub> | Drain to Source Voltage | | | 30 | -30 | V | | V <sub>GS</sub> | Gate to Source Voltage | | | ±20 | ±25 | V | | 1 | Drain Current - Continuous | T <sub>A</sub> = 25 °C | | 6.4 | -4.5 | ۸ | | ID | - Pulsed | | | 30 | -30 | A | | | Power Dissipation for Dual Operation | | | 2 | .0 | | | $P_{D}$ | Power Dissipation for Single Operation | T <sub>A</sub> = 25 °C | (Note 1a) | 1 | .6 | W | | | | T <sub>A</sub> = 25 °C | (Note 1b) | 0 | .9 | | | E <sub>AS</sub> | Single Pulse Avalanche Energy | | (Note 4) | 18 | 5 | mJ | | T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range | | | -55 to | °C | | ### **Thermal Characteristics** | $R_{ heta JC}$ | Thermal Resistance, Junction to Case | (Note 1) | 40 | °C/W | |-----------------|-----------------------------------------|-----------|----|------| | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 78 | C/VV | ## **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|----------|---------|-----------|------------|------------| | FDS8958B | FDS8958B | SO-8 | 13 " | 12 mm | 2500 units | # **Electrical Characteristics** T<sub>J</sub> = 25 °C unless otherwise noted | Symbol | Parameter | Test Conditions | Type | Min | Тур | Max | Units | |-------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|-----------|-----------|-------------|----------| | Off Chara | cteristics | | | | | | | | BV <sub>DSS</sub> | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$<br>$I_D = -250 \mu A, V_{GS} = 0 V$ | Q1<br>Q2 | 30<br>-30 | | | V | | $\frac{\Delta BV_{DS}}{\Delta T_J}$ | Breakdown Voltage Temperature Coefficient | $I_D$ = 250 μA, referenced to 25 °C $I_D$ = -250 μA, referenced to 25 °C | Q1<br>Q2 | | 24<br>-21 | | mV/°C | | I <sub>DSS</sub> | Zero Gate Voltage Drain Current | V <sub>DS</sub> = 24 V, V <sub>GS</sub> = 0 V<br>V <sub>DS</sub> = -24 V, V <sub>GS</sub> = 0 V | Q1<br>Q2 | | | 1<br>-1 | μА | | I <sub>GSS</sub> | Gate to Source Leakage Current | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$<br>$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$ | Q1<br>Q2 | | | ±100<br>±10 | nA<br>μA | ## **On Characteristics** | V <sub>GS(th)</sub> | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$<br>$V_{GS} = V_{DS}, I_D = -250 \mu A$ | Q1<br>Q2 | 1.0<br>-1.0 | 2.0<br>-1.9 | 3.0<br>-3.0 | V | |----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------|----------------|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage<br>Temperature Coefficient | $I_D$ = 250 μA, referenced to 25 °C $I_D$ = -250 μA, referenced to 25 °C | Q1<br>Q2 | | -6<br>5 | | mV/°C | | _ | Static Drain to Source On Resistance | $V_{GS} = 10 \text{ V}, \ I_D = 6.4 \text{ A}$<br>$V_{GS} = 4.5 \text{ V}, \ I_D = 5.2 \text{ A}$<br>$V_{GS} = 10 \text{ V}, \ I_D = 6.4 \text{A}, \ T_J = 125 ^{\circ}\text{C}$ | Q1 | | 21<br>29<br>31 | 26<br>39<br>39 | m0 | | DS(on) | | $V_{GS}$ = -10 V, $I_D$ = -4.5 A<br>$V_{GS}$ = -4.5 V, $I_D$ = -3.3 A<br>$V_{GS}$ = -10 V, $I_D$ = -4.5 A, $T_J$ = 125 °C | Q2 | | 38<br>60<br>53 | 51<br>80<br>72 | - mΩ | | g <sub>FS</sub> | Forward Transconductance | $V_{DD} = 5 \text{ V}, I_{D} = 6.4 \text{ A}$<br>$V_{DD} = -5 \text{ V}, I_{D} = -4.5 \text{ A}$ | Q1<br>Q2 | | 20<br>10 | | S | # **Dynamic Characteristics** | C <sub>iss</sub> | Input Capacitance | Q1<br>V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0 V, f = 1 MHZ | Q1<br>Q2 | 405<br>570 | 540<br>760 | pF | |------------------|------------------------------|-------------------------------------------------------------------|----------|------------|------------|----| | C <sub>oss</sub> | Output Capacitance | Q2 | Q1<br>Q2 | 75<br>115 | 100<br>155 | pF | | C <sub>rss</sub> | Reverse Transfer Capacitance | $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$ | Q1<br>Q2 | 55<br>100 | 80<br>150 | pF | | R <sub>g</sub> | Gate Resistance | | Q1<br>Q2 | 2.4<br>4.4 | | Ω | # **Switching Characteristics** | t <sub>d(on)</sub> | Turn-On Delay Time | Q1 | Q1<br>Q2 | 4.3<br>6.0 | 10<br>12 | ns | |---------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------|----------|------------|------------|----| | t <sub>r</sub> | Rise Time | $V_{DD}$ = 15 V, $I_{D}$ = 6.4 A,<br>$V_{GS}$ = 10 V, $R_{GEN}$ = 6 $\Omega$ | Q1<br>Q2 | 2.0<br>6.0 | 10<br>12 | ns | | t <sub>d(off)</sub> | Turn-Off Delay Time | Q2<br>V <sub>DD</sub> = -15 V, I <sub>D</sub> = -4.5 A, | Q1<br>Q2 | 12<br>17 | 22<br>30 | ns | | t <sub>f</sub> | Fall Time | $V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$ | Q1<br>Q2 | 2.0<br>7.0 | 10<br>14 | ns | | Q <sub>g(TOT)</sub> | Total Gate Charge | V <sub>GS</sub> = 10 V<br>V <sub>GS</sub> = -10 V Q1 | Q1<br>Q2 | 8.3<br>14 | 12<br>19 | nC | | Q <sub>g(TOT)</sub> | Total Gate Charge | $V_{GS} = 4.5 \text{ V}$<br>$V_{GS} = -4.5 \text{ V}$<br>$V_{DD} = 15 \text{ V}$ ,<br>$I_{D} = 6.4 \text{ A}$ | Q1<br>Q2 | 4.1<br>7.0 | 5.8<br>9.6 | nC | | Q <sub>gs</sub> | Gate to Source Charge | Q2<br>V <sub>DD</sub> = -15 V, | Q1<br>Q2 | 1.3<br>1.9 | | nC | | Q <sub>gd</sub> | Gate to Drain "Miller" Charge | I <sub>D</sub> = -4.5 A | Q1<br>Q2 | 1.7<br>3.6 | | nC | # **Electrical Characteristics** $T_J = 25$ °C unless otherwise noted Parameter | Drain-S | Drain-Source Diode Characteristics | | | | | | | |-----------------|------------------------------------------|-------------------------------------------------------|----------|--|------|------------|----| | $V_{SD}$ | Source to Drain Diode Forward Voltage | $V_{GS} = 0 \text{ V, } I_S = 1.3 \text{ A}$ (Note 2) | Q1 | | 8.0 | 1.2 | V | | | | | Q2<br>Q1 | | -0.8 | -1.2<br>30 | | | t <sub>rr</sub> | Reverse Recovery Time | Q1<br>I <sub>F</sub> = 6.4 A, di/dt = 100 A/μs | Q2 | | 20 | 36 | ns | | Q <sub>rr</sub> | Reverse Recovery Charge | Q2 | Q1 | | 6 | 12 | nC | | ≪rr | . to | I <sub>F</sub> = -4.5 A, di/dt = 100 A/μs | Q2 | | 8 | 16 | | **Test Conditions** #### NOTES Symbol 1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in<sup>2</sup> pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design. a) 78 °C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper b) 135 °C/W when mounted on a minimun pad Туре Min Тур Max Units - 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%. - 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied. - 4. UIL condition: Starting T $_{J}$ = 25 °C, L = 1 mH, I $_{AS}$ = 6 A, V $_{DD}$ = 27 V, V $_{GS}$ = 10 V . (Q1) Starting $T_J$ = 25 °C, L = 1 mH, $I_{AS}$ = -4 A, $V_{DD}$ = -27 V, $V_{GS}$ = -10 V. (Q2) # Typical Characteristics (Q1 N-Channel) T<sub>J</sub> = 25 °C unless otherwise noted Figure 1. On Region Characteristics 1.8 1.6 1.4 1.0 0.8 -50 **DRAIN TO SOURCE ON-RESISTANCE** NORMALIZED 100 125 150 Figure 3. Normalized On Resistance vs Junction Temperature T<sub>J</sub>, JUNCTION TEMPERATURE (°C) 0 25 50 75 Figure 5. Transfer Characteristics Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage Figure 4. On-Resistance vs Gate to Source Voltage Figure 6. Source to Drain Diode **Forward Voltage vs Source Current** # Typical Characteristics (Q1 N-Channel) $T_J$ = 25 °C unless otherwise noted Figure 7. Gate Charge Characteristics Figure 8. Capacitance vs Drain to Source Voltage Figure 9. Unclamped Inductive Switching Capability Figure 10. Forward Bias Safe Operating Area Figure 11. Single Pulse Maximum Power Dissipation # Typical Characteristics (Q1 N-Channel) T<sub>J</sub> = 25 °C unless otherwise noted Figure 12. Junction-to-Ambient Transient Thermal Response Curve ## Typical Characteristics (Q2 P-Channel) T<sub>J</sub> = 25 °C unless otherwise noted Figure 15. On-Region Characteristics Figure 17. Normalized On-Resistance vs Junction Temperature 4.5 **DRAIN TO SOURCE ON-RESISTANCE** 4.0 3.5 3.0 NORMALIZED PULSE DURATION = 80 us DUTY CYCLE = 0.5%MAX 2.5 2.0 1.5 1.0 V<sub>GS</sub> = -10 V 0.5 0 18 6 12 24 -I<sub>D</sub>, DRAIN CURRENT (A) Figure 16. Normalized on-Resistance vs Drain Current and Gate Voltage Figure 18. On-Resistance vs Gate to Source Voltage Figure 20. Source to Drain Diode Forward Voltage vs Source Current ## Typical Characteristics (Q2 P-Channel) T<sub>J</sub> = 25 °C unless otherwise noted Figure 21. Gate Charge Characteristics Figure 22. Capacitance vs Drain to Source Voltage Figure 23. Unclamped Inductive Switching Capability Figure 24. Ig vs Vgs Figure 25. Forward Bias Safe Operating Area Figure 26. Single Pulse Maximum Power Dissipation # Typical Characteristics (Q2 P-Channel) T<sub>J</sub> = 25 °C unless otherwise noted Figure 27. Junction-to-Ambient Transient Thermal Response Curve ## **Physical Dimensions** 0.65 4.90±0.10 → В 1.75 6.00±0.20 5.60 3.90±0.10 PIN ONE **INDICATOR** 1.27 1.27 0.25(M) C B A LAND PATTERN RECOMMENDATION SEE DETAIL A 0.175±0.75 0.22±0.30 1.75 MAX 0.10 0.42±0.09 **OPTION A - BEVEL EDGE** $(0.86) \times 45^{\circ}$ R<sub>0.10</sub> GAGE PLANE OPTION B - NO BEVEL EDGE R<sub>0.10</sub> 0.36 NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA. SEATING PLANE ALL DIMENSIONS ARE IN MILLIMETERS. 0.65±0.25 DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. (1.04)D) LANDPATTERN STANDARD: SOIC127P600X175-8M. DETAIL A E) DRAWING FILENAME: M08Arev15 F) FAIRCHILD SEMICONDUCTOR. Figure 16. 8-Lead, SOIC, JEDEC MS-012, .150-inch Narrow Body Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <a href="http://www.fairchildsemi.com/dwg/M0/M08A.pdf">http://www.fairchildsemi.com/dwg/M0/M08A.pdf</a>. #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ F-PFS™ AX-CAP®, FRFET® Global Power Resource BitSiC™ Build it Now™ GreenBridge™ Green FPS™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ Gmax™ CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Dual Cool™ Making Small 9 Dual Cool™ Making Small Speakers Sound Louder EcoSPARK<sup>®</sup> and Better™ ESBC™ MICROCOUPLER™ ESBC™ MICROFET™ MicroFeT™ MicroPak™ Fairchild® MicroPak²™ Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FAST® FastvCore™ FETBench™ FE PowerTrench<sup>®</sup> PowerXS™ Programmable Programmable Active Droop™ OFET® QFET<sup>®</sup> QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ Solutions for You SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM GENERAL®' TinyBoost® TinyBock® TinyLogic® TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®\* µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. ### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. ### As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. ### PRODUCT STATUS DEFINITIONS ## Definition of Terms | Definition of Terms | | | |--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Datasheet Identification | Product Status | Definition | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. 166 <sup>\*</sup> Trademarks of System General Corporation, used under license by Fairchild Semiconductor. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h ## **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative