OMRON

Photomicrosensor (Reflective) EE-SY1200

Be sure to read *Precautions* on page 24.

Dimensions

Terminal No.	Name		
A	Anode		
К	Cathode		
С	Collector		
E	Emitter		

Note:

Unless otherwise specified tolerances are ± 0.15 .

No burrs dimensions are included in outline dimensions.

The burrs dimensions are 0.15 MAX. Diagonal line indicate the region is part Au plating area.

Recommended Soldering Pattern

- Note:1. The shaded portion in the above figure may cause shorting. Do not wire in this portion.
 - The dimensional tolerance for the recommended soldering pattern is ±0.1 mm.

Internal Circuit

Features

- Ultra-compact model.
- PCB surface mounting type.
- High S/N ratio
- (High light current / Low leakage current)
- Recommended sensing distance = 1.0 to 4.0 mm

Absolute Maximum Ratings (Ta=25°C)

	ltem	Symbol Rated value		Unit
Emit-	Forward current	lf	50 ^{*1}	mA
ter	Pulse forward current	Ifp	500 ^{*2}	mA
	Reverse voltage	Vr	4	V
Detec- tor	Collector-Emitter voltage	Vceo	30	V
	Emitter-Collector voltage	Veco	5	V
	Collector current	Ic	20	mA
	Collector dissipa- tion	Pc	50 ^{*1}	mW
Operating temperature		Topr	-25 to +85	°C
Storage temperature		Tstg	-40 to +100	°C
Reflow soldering tempera- ture		Tsol	240*3	°C

*1 Refer to the temperature rating chart if the ambient temperature exceeds $25^{\circ}C$.

*2 The pulse width is 10 μs maximum with a frequency of 100 Hz.

*3 Complete soldering within 10 seconds for reflow soldering.

■ Electrical and Optical Characteristics (Ta=25°C)

ltem		Symbol	Value		Unit	Condition	
			MIN.	TYP.	MAX.		
Emitter	Forward voltage	V _F		1.2	1.4	V	I _F = 20 mA
	Reverse current	I _R			10	μΑ	VR = 4 V
	Peak emission wavelength	λ _P		940		nm	
Detector	Light current 1	I _L 1	200		1000	μA	$I_F = 10 \text{ mA}, V_{CE} = 2 \text{ V}, \text{ Aluminum-deposited}$ surface, d = 4 mm ^{*1}
	Light current 2	۱ _L 2	150			μA	$I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}, \text{Aluminum-deposited}$ surface, d = 1 mm ^{*1}
	Dark current	Ι _D		2	200	nA	VCE = 10 V, 0 Ix
	Leakage current 1	I _{LEAK} 1			500	nA	$I_F = 10 \text{ mA}, V_{CE} = 2 \text{ V}, \text{ with no reflection}^{*2}$
	Leakage current 2	I _{LEAK} 2			200	nA	$I_F = 4 \text{ mA}, V_{CE} = 2 \text{ V}, \text{ with no reflection}^{*2}$
	Collector-Emitter saturated voltage	V _{CE} (sat)				V	
	Peak spectral sensitivity wavelength	λ _P		850		nm	
Rising tin	ne	tr		30		μs	V_{CC} = 2 V, R _L = 1 kΩ, I _L = 100 µA, d = 1 mm ^{*1}
Falling tin	ne	tf		30		μs	$V_{CC} = 2 \text{ V}, \text{ R}_{L} = 1 \text{ k}\Omega, \text{ I}_{L} = 100 \mu\text{A}, \text{ d} = 1 \text{ mm}^{*1}$

*1. The letter "d" indicates the distance between the top surface of the sensor and the sensing object.

*2. Depends on the installed condition of the Photomicrosensor, the detector may receive the sensor's LED light and/or the external light which is reflected from surroundings of the Photomicrosensor and /or the background object.
Depends on the application of the Photomicrosensor and /or the background object.

OMRON

Engineering Data

Forward Current vs. Collector Dissipation Temperature Rating

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Sensing Position Characteristics (Typical)

Forward Current vs. Forward Voltage Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Light Current vs. Forward Current Characteristics (Typical)

Dark Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Light Current Measurement Setup Diagram

EE-SY1200 Photomicrosensor (Reflective) 155

OMRON

■ Tape and Reel

Reel Dimension (Unit: mm)

Tape Dimension (Unit: mm)

Part Mounting Direction

• The devices are oriented in the rectangular holes in the carrier tape so that the edge with the LED faces the round feeding holes.

Tape Quantity 2,000 pcs./reel

Precautions to be taken on mounting

Temperature Profile

The reflow soldering can be implemented in two times complying with the following diagram.

All the temperatures in the product must be within the diagram.

Manual soldering

The manual soldering cannot be applied to the products. There is a possibility that the housing is deformed and/or Au plating is peeled off by heat.

Other Notes

The use of infrared lamp causes the temperature at the resin to rise particularly too high.

All the temperatures in the product must be within the above diagram.

Do not immerse the resin part into the solder.

Even if within the above temperature diagram, there is a possibility that the gold wire in the products is broken in case that the deformation of PCB gives the stress to the product terminals. Please confirm the conditions of the reflow soldering fully by actual

solder reflow machine prior to the mass production use.

■ Storage and Handling after Opening

Storage Conditions

In order to avoid the absorption of moisture, the products shall be stored in a dry box with desiccant or in the following conditions.

Storage temp. : 5 to 30°C

Storage humidity : 70%RH or less

Treatment after Opening

- Reflow soldering must be done within 48 hours stored at the conditions of humidity 60%RH or less and temperature 5 to 25°C.
- In case of long time storage after open, please mount at the conditions of humidity 70%RH or less and temperature 5 to 30°C within 1 week by using dry box or resealing with desiccant in moisture-proof bag by sealer.

Baking before Mounting

In case that it could not carry out the above treatment, it is able to mount by baking treatment.

However baking treatment shall be limited only 1 time.

Recommended conditions : 60°C, 12 to 24 hours (reeled one) 100°C, 8 to 24 hours (loose one)