General Description The MAX17558 EV kit provides a proven design to evaluate the MAX17558 wide 4.5V to 60V input, dual-output, synchronous step-down DC-DC controller. The EV kit provides 5V/5A and 3.3V/10A at the outputs from a 6V to 60V input supply. The switching frequency of the EV kit is preset to 350kHz for optimal efficiency and component size. The EV kit features adjustable input undervoltage-lockout and soft-start time, selectable PWM/DCM modes, 180° out-of-phase/0° in-phase operation, current-limit threshold, and independent open-drain PGOOD signals. #### **Features** - 6V to 60V Input Range - Output Rails: V_{OUT1}: 5V/5A, V_{OUT2}: 3.3V/10A - 350kHz Switching Frequency - Independent Enable Inputs - Independent Adjustable Soft-Start Time - Configurable Tracking Operation - Selectable PWM/DCM Modes of Operation - Selectable 180° Out-of-Phase/0° In-Phase Operation - Selectable Current-Limit Threshold - Independent PGOOD Outputs - Overcurrent, Overvoltage, and Overtemperature Protection - Proven PCB Layout - Fully Assembled and Tested Ordering Information appears at end of data sheet. #### **Quick Start** #### **Required Equipment** - MAX17558 EV kit - 4.5V to 60V, 15A DC power supply - Loads capable of sinking 5A and 10A - Two digital voltmeters (DVM) #### **Procedure** The EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed. **Evaluates: MAX17558** - 1) Ensure that the DC power supply is disabled. Set the power supply voltage to 24V. - 2) Set one of the loads to 5A and the other to 10A. Disable the load in the case of an electronic load. Leave the load unconnected in the case of a resistor load and ensure that the resistor power rating is high enough to dissipate the output power. - Connect the positive terminal of the power supply to the VIN connector and the negative terminal of the power supply to PGND connector, which is nearest to VIN connector. - Connect one digital voltmeter across VOUT1 connector and the nearest PGND connector with the positive terminal of the DVM connected to VOUT1 connector. - Connect the other digital voltmeter across VOUT2 connector and the nearest PGND connector with the positive terminal of the DVM connected to VOUT2 connector. - Verify the shunts on jumpers, as described in <u>Table 1</u>, to select default settings of the EV kit. - 7) Turn on the DC power supply. - 8) Verify that the digital voltmeters display the expected voltages (5V±1% on VOUT1 and 3.3V±1% on VOUT2). - 9) Enable the electronic load (connect the load in the case of resistor load). - 10) Verify that the voltmeters display the expected voltages (5V±1% on V_{OUT1} and 3.3V±1% on V_{OUT2}). # Evaluates: MAX17558 #### **Detailed Description of Hardware** The EV kit provides a proven design to evaluate the device. The EV kit provides 5V/5A and 3.3V/10A at the outputs from 6V to 60V input supply. The EV kit can also operate over the 4.5V to 60V range to provide only 3.3V output by connecting a shunt of JU4 at the 2-3 position to disable the 5V output. The EV kit is preset to operate at 350kHz for optimum efficiency and component size. The EV kit provides set resistors R16, R17 and R18, R19 and jumpers JU4, JU5 to enable/disable the output at a desired input UVLO voltage. The DCM or PWM mode of operation can be selected using JU3. JU1 allows selection of 180°/0° phase-shift operation between the two controllers. JU2 allows the selection of three different current-limit thresholds for both controllers. Refer to Table 2 through Table 4 for additional jumper setting details. ### Configuring the Output Voltages (V_{OUT1}, V_{OUT2}) The device's output voltages (V_{OUT1} and V_{OUT2}) can be adjusted between 0.8V to 24V through sets of feedback resistor-dividers (R6, R7 and R26, R27) by the following formula: $$R7 = \frac{R6}{(\frac{V_{OUT1}}{0.8} - 1)}$$ Please refer to the MAX17558 IC data sheet to select R6 resistor values and change compensation components, as well as output capacitors, for new output voltage settings. #### Soft-Start (SS) The device offers an SS_ pin used to adjust the soft-start time to limit inrush current during startup. Soft-start times are controlled by the values of C21 and C30 for V_{OUT1} and $V_{OUT2},$ respectively. An internal 5 μA current source charges the capacitor at the SS_ pin, providing a linear ramping voltage for output voltage reference. The soft-start time of V_{OUT1} and V_{OUT2} are calculated based on the following equation: $$t_{SS_OUT1} = C21 \times \frac{0.8V}{5\mu A}$$ The default soft-start time on the EV kit is approximately 2.4ms. #### Enable/Undervoltage-Lockout Level (EN) The device's two controllers may be independently shut down/enabled using the EN1 and EN2 pins. The EN_ pin can be programmed at 1.25V (typ) to detect the input undervoltage-lockout at a desired input voltage to enable/ disable the corresponding controller with 50mV (typ) hysteresis. Connect a resistor-divider to EN_ from V_{IN} to GND to program the input undervoltage-lockout threshold to turn on/off the corresponding controller. For normal operation, the device is enabled whenever the input voltage is greater than 4.5V and JU4 and JU5 are open. Set the voltage at which each controller turns on by placing a shunt across pins 1-2 on JU4 and JU5, and adjust the resistor-divider formed by R16, R17 for controller 1 and by R18, R19 for controller 2. Table 2 shows the EV kit's jumper settings for configuring the EN_ pin. Select R17 (R19 for OUT2) below 10K and calculate the R16 (R18) based on the following equation: $$R16 = \frac{R17 \times (V_{INUVLO} - 1.25)}{1.25}$$ Where $V_{\mbox{\scriptsize INUVLO}}$ is the input voltage at which the controller is required to turn on. Table 1. Default Setting of MAX17558 EV kit | JUMPER | SHUNT POSITION | FUNCTION | | | |--------|----------------|---|--|--| | JU1 | Unconnected | Configure output 1 and output 2 180° out-of-phase operation | | | | JU2 | 1-2 | Select 75mV current-limit threshold | | | | JU3 | 1-2 | Select the PWM mode of operation | | | | JU4 | Unconnected | Enable control 1 | | | | JU5 | Unconnected | Enable control 2 | | | #### Mode Selection (SKIP) The device's SKIP pin is used to select light-load operating mode among the PWM/DCM modes of operation. Table 3 shows the EV kit's jumper settings for configuring the desired light-load operating mode. #### **Phase Shift Between Controllers** JU1 can be configured to switch between 0° and 180° phase-shift of the device's two controllers. <u>Table 4</u> shows the jumper configurations to select the phase-shift between the two controllers. #### **Current-Limit Threshold Selection (JU2)** The current-limit threshold of both of the device's controllers can be selected using the JU2. <u>Table 5</u> shows the EV kit jumper settings for selecting the current-limit threshold. Evaluates: MAX17558 Each controller's peak current limit can be adjusted independently by changing the values of R1 and R2. Note that changing R1 and R2 values affect the stability and current-sense signal across the current sense pins. Refer to the "Current Sensing" section of the MAX17558 IC data sheet for calculating the current-sense resistor value. **Table 2. Enable Control (JU4, JU5)** | JUMPER | SHUNT POSITION | EN | MAX17558 OUTPUT | | |--------|----------------|---|---|--| | JU4 | Not installed | Unconnected | Enabled | | | | 1-2 | Connected to the midpoint of input UVLO divider | Enabled, UVLO level is set by the resistor-divider from VIN to GND. | | | | 2-3 | Connected to GND | Disabled | | | JU5 | Not installed | Unconnected | Enabled | | | | 1-2 | Connected to the midpoint of input UVLO divider | Enabled, UVLO level is set by the resistor-divider from VIN to GND. | | | | 2-3 | Connected to GND | Disabled | | #### **Table 3. Mode Selection (JU3)** | SHUNT POSITION | SKIP PIN | LIGHT-LOAD OPERATING MODE | |----------------|---|---------------------------| | 1-2 | Connected to VCCINT | PWM mode | | 2-3 | Connected to VCCINT through a 100K resistor | DCM mode | ### **Table 4. Phase-Shift Selection (JU1)** | SHUNT POSITION | SEL_PH PIN | PHASE-SHIFT | |----------------|---------------------|-------------| | 1-2 | Connected to VCCINT | 0° | | Not installed | Unconnected | 180° | ## **Table 5. Peak Current-Limit Threshold Selection (JU2)** | SHUT POSITION ILIM Pin | | PEAK CURRENT LIMIT THRESHOLD | |------------------------|---------------------|------------------------------| | 1-2 | Connected to VCCINT | 75mV | | Not installed | Unconnected | 50mV | | 2-3 Connected to GND | | 30mV | #### **Switching Frequency** The device's switching frequency is set to 350kHz by resistor R14. Replace R14 with another value to set the switching frequency between 100kHz to 2200kHz. Use the following equation to calculate R14 when reconfiguring the switching frequency: $$R_{RT} = \frac{(f_{SW} + 133)}{8.8}$$ Where F_{SW} is in kHz and R14 is in K Ω . When reconfiguring the EV kit's switching frequency, it may be necessary to change the loop-compensation network's components to new values. Refer to the "Loop Compensation" section in the MAX17558 IC data sheet for computing new compensation component values. #### **Power-Good Outputs** The EV kit provides power-good output test points (PGOOD1 and PGOOD2) to monitor the PGOOD1 and PGOOD2 signals. The PGOOD signals are pulled-up to VCCINT by R21 and R20. PGOOD1 and PGOOD2 are high when V_{OUT1} and V_{OUT2}, respectively, are within the 90%-110% range of their programmed output voltages. When VOUT1 and VOUT2 are outside of the 90%-110% range of their programmed output voltages, PGOOD1 and PGOOD are pulled low, respectively. #### **Power Supply Tracking** The EV kit is set up for independent soft-start without tracking. The EV kit outputs are also operated in tracking mode, with either output as a master by the following modifications. Evaluates: MAX17558 For OUT2 to track OUT1, follow the steps below: - Replace R23 with a 0Ω resistor - Replace R22 and C30 with a resistive divider such that the parallel combination of the divider resistors is less than 10kΩ. The ratios of the resistor-dividers should be identical to the ratios of R26, R27, R6, and R7 for the coincident tracking and ratiometric tracking, respectively. For OUT1 to track OUT2, follow the steps below: - Replace R30 with a 0Ω resistor - Replace R29 and C21 with a resistive-divider such that the parallel combination of the divider resistors is less than 10kΩ. The ratios of the divider resistors should be identical to the ratios of R6, R7 and R26, R27 for the coincident tracking and ratiometric tracking, respectively. ### Evaluates: MAX17558 ## **EV Kit Performance Report** # Evaluates: MAX17558 ## **EV Kit Performance Report (continued)** Figure 1. MAX17558 EV Kit Component Placement Guide—Component Top Side Figure 3. MAX17558 EV Kit PCB Layout—Inner Layer 1 Figure 2. MAX17558 EV Kit PCB Layout— Component Top Side Figure 4. MAX17558 EV Kit PCB Layout—Inner Layer 2 Figure 5. MAX17558 EV Kit Component Placement Guide—Solder Bottom Side Figure 6. MAX17558 EV Kit PCB Layout—Component Bottom Side ## **Component Suppliers** | SUPPLIER | WEBSITE | |---------------------------------|------------------------------| | Wurth Elektronik | www.we-online.com | | Renesas Electronics | am.renesas.com | | Murata Americas | www.murata.com | | Panasonic Electronic Components | www.panasonic.com/industrial | | Vishay Dale | www.vishay.com | | TDK Corp. | www.tdk.com | | Rubycon Corp. | www.rubycon.com | | TT Electronics/Welwyn | www.welwyn-tt.com | Note: Indicate that you are using the MAX17558 when contacting these component suppliers. ## MAX17558 Evaluation Kit ## **Component List and Schematic** See the following links for component information and schematics: - MAX17558 EV BOM - MAX17558 EV Schematic # **Ordering Information** | PART | TYPE | |----------------|--------| | MAX17558EVKIT# | EV kit | Evaluates: MAX17558 #Denotes RoHS compliant. ## MAX17558 Evaluation Kit ## **Revision History** | REVISION
NUMBER | REVISION DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|---------------|-----------------|------------------| | 0 | 5/15 | Initial release | _ | For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. Evaluates: MAX17558 # **BILL OF MATERIALS (BOM)** | DESIGNATION | QTY | DESCRIPTION | |-----------------|-----|--| | C1 | 1 | 150uF, 80V , Aluminum-Electrolytic Capacitor | | | | PANASONIC EEVFK1K151Q | | C2-C9 | 8 | 4.7uF ±20%, 80V X7R Ceramic Capacitor | | | | Murata GRM32ER71K475ME14# | | C10, C11 | 2 | 120uF, 6.3V , Electrolytic Capacitor | | | | PANASONIC EEFSX0J121E7 | | C12,C13,C16,C17 | 4 | 10uF ±10%, 10V X7R Ceramic Capacitor(1210) | | | | Murata GRM32DR71A106KA01L | | C14, C15 | 2 | 180uF, 6.3V , Electrolytic Capacitor | | | | RUBYCON 6SW180M | | C18 | 1 | 1uF ±10%, 100V X7S Ceramic Capacitor(0805) | | | | TDK Corporation C2012X7S2A105K | | C19,C32 | 1 | 1uF ±10%, 16V X7R Ceramic Capacitor(0603) | | | | Murata GRM188R71A105KA61J | | C20 | 1 | 10uF ±10%, 10V X7R Ceramic Capacitor(0805) | | | | Murata GRM21BR71A106KE51L | | C21,C30 | 2 | 15nF ±10%, 16V X7R Ceramic Capacitor(0603) | | | | Murata GRM188R71C153KA01D | | C22,C28 | 2 | 12nF ±10%, 16V X7R Ceramic Capacitor(0603) | | | | Murata GRM188R71C123KA01D | | C23 | 1 | 68pF ±5%, 50V C0G Ceramic Capacitor(0603) | | | | Murata GRM1885C1H680J | | C24,C25,C26,C27 | 4 | 1nF ±10%, 16V X7R Ceramic Capacitor(0603) | | | | Murata GRM188R71C102KA01D | | C29 | 1 | 120pF ±5%, 50V C0G Ceramic Capacitor(0603) | | | | Murata GRM1885C1H121JA01D | | C31 | 1 | 0.47uF ±10%, 16V X7R Ceramic Capacitor(0603) | | | | Murata GRM188R71A474KA61D | | C33,C34 | 0 | Not Installed. | # **BILL OF MATERIALS (BOM)** | JU1 | 1 | 2-pin header (0.1" pitch) | |---|----|---| | 1110 1110 1114 1115 | | 2 p 1100001 (0.1 pitoli) | | JU2,JU3, JU4,JU5 | 4 | 3-pin header (0.1" pitch) | | L1 | 1 | 4.7μH, 9.4A Inductor | | | | Coilcraft SER1360-472KL | | L2 | 1 | 2.2µH, 11.5A Inductor | | | | Wurth Electronics 7447709002 | | Q1,Q5,Q7 | 3 | 60V, 25A N-Channel MOSFET (LFPAK) | | | | Renesas RJK0651DPB | | Q2,Q8 | 2 | 60V, 45A MOSFET (LFPAK) | | | | Renesas RJK0653DPB | | Q3 | 0 | Not installed, N-Channel MOSFET (LFPAK) | | | | Renasas RJK0651DPB | | Q4,Q6 | 0 | Not installed (LFPAK) | | | | Renasas RJK0653DPB | | D1,D2 | 2 | 100V Schottky Diode (POWERDI 123) | | | | Diodes Incorporated DFLS 1100-7 | | R1 | 1 | 9mΩ ±1% 1Watt current sense resistor (2010) | | | | ROHM Semiconductor PMR50HZPFU9L00 | | R2 | 1 | 5mΩ ±1% 1.5Watt current sense resistor (2010) | | | | TT Electronics/Welwyn LRMAT2010-R005FT4 | | R3,R5,R9,R10,R11,R12,R13, R22,R24,
R25,R29 | 11 | 0Ω ±1% resistor (0603 | | R4 | 1 | 2.2Ω ±1% resistor (0603) | | R6 | 1 | 95.3KΩ ±1% resistor (0603) | | R7 | 1 | 18.7KΩ ±1% resistor (0603 | | R8 | 1 | 13.3KΩ ±1% resistor (0603) | | R14 | 1 | 53.6KΩ ±1% resistor (0603) | | R15,R26 | 2 | 100KΩ ±1% resistor (0603) | | R20, R21 | 2 | 10KΩ ±1% resistor (0603) | # **BILL OF MATERIALS (BOM)** | R16, R17, R18, R19, R23, R30 | 0 | Not installed, resistor (0603) | |---|----|--| | R27 | 1 | 32.4KΩ ±1% resistor (0603 | | R28 | 1 | 12.1KΩ ±1% resistor (0603) | | U1 | 1 | Wide 4.5V to 60V Input, Dual Output, Step-Down DC-DC Controller (32 TQFN-EP) Maxim MAX17558ATJ+ | | VIN,PGND,VOUT1,PGND,VOUT2,PGN
D,EN1,EN2,GND,PGOOD1,PGOOD2,
VCCINT,TRACK1,TRACK2 | 14 | 20G tinned copper Bus wire formed into "U" shaped loops (0.25" off the PC board) | | VIN,PGND,VOUT1,PGND,VOUT2,PGN
D | 6 | Non -Insulate Jack Keystone Electronics 575-4 |