Atmel Lab: Cortex™-M3 Training featuring Serial Wire Viewer DE KEI E

SAMSX EK evaluation board using ARM® Keil™ MDK Toolkit Tools by ARM
Summer 2012 Version 1.7 by Robert Boys, bob.boys@arm.com

Introduction: For the latest version of this document: www.keil.com/appnotes/docs/apnt_229.asp

The purpose of this lab is to introduce you to the Atmel Cortex™-M3 processor using the ARM® Keil™ MDK toolkit
featuring the IDE pVision®. We will use the Serial Wire Viewer (SWV) on the ATSAM3X processor. At the end of this
tutorial, you will be able to confidently work with these processors and Keil MDK. See www.keil.com/atmel for more labs.

Keil MDK supports and has examples for most Atmel ARM processors. Check the Keil Device Database® on
www.keil.com/dd for the complete list which is also included in MDK: in uVision select Project/Select Device for target...

Linux: SAMO processors running Linux, Android and bare metal are supported by ARM DS-5". www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn it into the full, unrestricted version. Contact Keil sales for a
temporary full version license if you need to evaluate MDK with programs greater than 32K or with Keil middleware.

Middleware: MDK Professional contains middleware libraries including TCP/IP stack, CAN drivers, a Flash file system and
USB drivers. Contact Keil sales for information regarding middleware for your processor. http://www.keil.com/arm/mdk.asp.

RTX RTOS: All variants of MDK contain the full version of RTX with Source Code. See www.keil.com/rl-arm/kernel.asp.

Why Use Keil MDK ?
MDK provides these features particularly suited for Cortex-M users:

1. uVision IDE with Integrated Debugger, Flash programmer and
the ARM® Compiler toolchain. MDK is a turn-key product.

2. Afull feature Keil RTOS called RTX is included with MDK.
RTX comes with a BSD type license. Source code is provided.

3. Serial Wire Viewer trace capability is included.
4. RTX Kernel Awareness window. It is updated in real-time.

5. Choice of adapters: ULINK™2, ULINK-ME, ULINKpro,
Segger J-Link and SAM-ICE (version 6 or later for SWV).

6. Kernel Awareness is available for Keil RTX, CMX, Quadros,
Micrium and FreeRTOS. All RTOSs will compile with MDK.

7. Keil Technical Support is included for one year and is easily
renewable. This helps you get your project completed faster.

8. MDK includes support for Atmel ARM7 and ARM9
processors. Keil also supports many Atmel 8051 processors.

This document details these features: SAM3X-EK with Keil ULINK2
1. Serial Wire Viewer (SWV). Real-time tracing updated while the program is running.

2. Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also known as Access Breaks).
4. RTX Viewer: a kernel awareness program for the Keil RTX RTOS.

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf), CPU
counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into the SAM3 and
SAM4. SWYV does not steal any CPU cycles and is completely non-intrusive. (except for the ITM Debug printf Viewer).

CoreSight displays memory contents and variable values in real-time and these can be modified on-the-fly. SWV is supported
by the Keil ULINK2, ULINK-ME, ULINKpro, Segger J-Link (Version 6 or later) and Atmel SAM-ICE Version 6 or later.

No special equipment or software is needed beyond MDK and one of these USB adapters. There is nothing extra to purchase.
SWV provides you with the ability to do advanced software development beyond regular stop and go debugging.

1 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

mailto:bob.boys@arm.com�
http://www.keil.com/atmel�
http://www.keil.com/dd�
http://www.keil.com/arm/mdk.asp�
http://www.keil.com/rl-arm/kernel.asp�

Index:

1. Atmel Evaluation Boards & Keil Evaluation Software: 3
2. Software Installation: 3
3. CoreSight Definitions: 3
4. CMSIS: Cortex Microcontroller Software Interface Standard 3
5. Using Various USB adapters: J-Link, SAM-ICE, Keil ULINK: 4
1) Configuring a Segger J-Link and SAM-ICE: 4
2) Configuring a Keil ULINK2 or ULINK-ME: 5
3) Configuring a Keil ULINKpro: 6
6. Serial Wire Viewer (SWV) Configuration: 7
7. Blinky example using the Atmel SAM3X-EK: 8
8. Hardware Breakpoints: 8
9. Call Stack & Locals window: 9
10. Watch and Memory windows and how to use them: 10
11. How to view Local Variables in Watch and Memory windows: 11
12. View Variables Graphically with the Logic Analyzer (LA): 12
13. Watchpoints: Conditional Breakpoints: 13
14. RTX Blinky: Keil RTX RTOS example: 14
15. RTX Kernel Awareness using RTX Viewer: 15
16. Logic Analyzer: View variables real-time in a graphical format: 16
17. Serial Wire Viewer (SWV) and how to use it: 17
1) Data Reads and Writes 17
2) Exceptions and Interrupts 18
3) PC Samples (program counter samples) 19
18. Segger J-Link and SAM-ICE Trace Windows: 20
19. Keil ULINKpro Trace Windows: 21
20. ITM (Instruction Trace Macrocell): 23
21. DSP SINE example using ARM CMSIS-DSP Libraries: 24
22. Creating your own project from scratch: 28
23. Serial Wire Viewer summary: 30
24. Useful Documents: 30
25. Keil Products and contact information: 31

Using this document:

1. The latest version of this document and the necessary example source files are available here:
www.keil.com/appnotes/docs/apnt_229.asp

2. Configuring various debug adapters starts on page 4.
ULINK2 is used by default.
The first exercise starts on page 8. You can go directly there if using a ULINK2 or a ULINK-ME.

2 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.Kkeil.com

1) Atmel Evaluation Boards & Keil Evaluation Software:

Keil currently provides board support for four SAM3 (Cortex-M3) and one SAM4 (Cortex-M4) boards as listed here:
SAM3N-EK, SAM3S-EK: SAM3U-EK, SAM3X-EK and SAMA4S. SAM7 and SAM9 boards are also supported.
Example Programs: Keil provides various example programs. See C:\KeilARM\Boards\Atmel\ for the project files.

Most programs can be compiled with MDK-L.ite: the free evaluation version. LCD_Blinky and \RL (the middleware) are
exceptions. The Executable LCD_Blinky.axf is provided precompiled in the \Flash directory. Attempting to compile the
LCD_BIlinky project will erase the .axf. It is a good idea to back it up first.

\RL consists of Flash File examples. Such middleware is a component of MDK Professional. To run these examples a full
license is needed. Please contact Keil sales for a temporary license if you want to evaluate Keil middleware.

Blinky: blinks a LED or series of LEDs.

RTX_Blinky uses the RTX RTOS in a stepper motor driver example. It has the Event Viewer: RTX kernel awareness.
Keil Sales: In USA and Canada: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

2) Software Installation:

This document was written for Keil MDK 4.23 or later which contains puVision 4. The evaluation copy of MDK (MDK-L.ite)
is available free on the Keil website. Do not confuse pVision4 with MDK 4.0. The number “4” is a coincidence.

To obtain a copy of MDK go to www.keil.com/arm and select the “Download” icon located on the right side.
You can use the evaluation version of MDK-Lite and a ULINK2, ULINK-ME, ULINKpro, J-Link or SAM-ICE for this lab.

The ULINKpro adds Cortex-M ETM trace support. ETM is not currently implemented on the SAM3 processor family. The
ULINKQpro can be used with the SAM3 for SWV support and it also provides the fastest Flash programming and SWV speeds
available. If you need fast Serial Wire Viewer data, ULINKpro is the best choice since it uses Manchester encoding.

3) CoreSight Definitions: Itis useful to have a basic understanding of these terms:
e JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

e SWAD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except for no
Boundary Scan. SWD is referenced as SW in the pVision Cortex-M Target Driver Setup. See page 4, 2" picture.
The SWJ box must be selected. SWV must use SWD because of the TDIO conflict described in SWO below.

e SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.

DAP: Debug Access Port. A component of the ARM CoreSight debugging module that is accessed via the JTAG or
SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-fly memory
accesses without the need for processor core intervention. pVision uses the DAP to update memory, watch and
RTOS kernel awareness windows in real-time while the processor is running. You can also modify variable values
on the fly. No CPU cycles are used, the program can be running and no code stubs are needed in your sources.

You do not need to configure or activate DAP. pVision does this automatically when you select the function.

e SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.
e Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin).
e ETM: Embedded Trace Macrocell: Provides all the program counter values. Only the ULINKpro provides ETM.

Note: Current SAM3 and SAM4 Atmel processors do not have a Trace Port or ETM trace. They do fully support all other
ARM CoreSight features. SAM-ICE and Segger J-Link V 6 or later supports Serial Wire Viewer.

4) CMSIS: Cortex Microcontroller Software Interface Standard
ARM CMSIS-DSP libraries are offered for all Cortex-M3 and Cortex-M4 processors.
CMSIS-RTOS provides standard APIs for RTOSs. CMSIS_DSP provides DSP libraries.

Atmel example software is CMSIS hardware abstraction layer compliant.

See www.arm.com/cmsis and www.onarm.com/cmsis/download/ for more information.

3 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.Kkeil.com

mailto:sales.us@keil.com�
mailto:sales.intl@keil.com�
http://www.keil.com/arm�
http://www.arm.com/cmsis�
http://www.onarm.com/cmsis/download/�

5) Using Various USB adapters: J-Link, SAM-ICE, Keil ULINK series:

It is easy to select a USB adapter in pVision. You must configure the connection to both the target and to Flash programming
in two separate windows as described below. They are selected using the Debug and Utilities tabs.

This document will use a ULINK2. You can substitute a J-Link, SAM-ICE or ULINKpro with suitable adjustments.
1) Configuring a Segger J-Link and SAM-ICE: (the Atmel SAM-ICE is pictured on page 6)

Serial Wire Viewer is supported by hardware Version 6 or later only and only those with the black case. The main difference
between V 6 through 8 is speed, so the later the version the better. The version number is printed on the Segger adapters.

The trace window with J-Link or SAM-ICE is different than that used with the Keil ULINK2 or ME. J-Link uses the same
Instruction Trace window as used by ULINKpro. This window has more advanced features than the one presented by the
ULINK2. The SAM-ICE and J-Link Trace Data window requires the program be stopped to be updated. All other display
windows are the same as the ULINK2. Currently, SWV data writes or reads are not supported with J-Link or SAM-ICE.

USB Drivers: The Segger USB drivers are located in C:\KeilARM\Segger\USBDriver should you need them.

1. Assume the SAM-ICE or J-Link is connected to a powered up Atmel target board, pVision is running in Edit mode
(as when first started — not in Debug mode) and you have selected a valid project. See the exercise on page 8.

Select the debug connection to the target:

2. Select Options for Target > or ALT-F7 and select the Debug tab. In the - x|
drop-down menu box select the J-Link as shown here: === Likr Db | e

3. Select Settings and the next window below opens up. This is the control panel ‘ oo oo/ strce Conex 7] stis |
for the J-Link. | [V Load Application at Startup ¥ Runto main()

4. InPort: select SW. Serial Wire Viewer (SWV) will not work presromsssrr x
with JTAG. If you do not plan to use SWV, you can use Db | s | e Donnoad |
JTAG ~d-Link / J-Trace Adapter SW D

sw: [23000427 =] usesT =] IDCODE | Device Name [il

5. Clicking on Auto CIk will select the highest JTAG/SWD speed o g s | e ﬁ
possible. If debugging or Flash programming operation is e PR e
unstable, select a lower speed. The Flash programming speed [sw =] [rowre =1/ € WemelEeriaeton. Desieatiems [|
is affected the most by this setting. | e T —

6. Inthe SW Device area; ARM CoreSight SW-DP MUST be eetremtmns Cabeomm | DowiesdOptos
displayed. This confirms you are connected to the target (,, e Bl [F Cove s [F Pt
processor. If there is an error displayed or it is blank: this — _
must be fixed before you can continue. Check the target PUE ®EmE || I pot e) | Asodes| || ko |
power supply. Cycle the power to the J-Link and the board. S;—' { EEEE : e || duskons |
No number in the SN: box means pVision is unable to connect
to the J-Link or SAM-ICE via USB. = — b

TIP: To refresh this screen, change the option in Port: or click OK
once to leave this screen and then re-enter it.

Configure the Keil Flash Programmer:

Cortex JLink/JTrace Target Driver Setup

7. Click on OK once and select the Utilities tab. Debug | Trace Fish Dowriad |

8. Select the J-Link similar to Step 2 above. e EEEZZ:L?;” oo JOVR—

9. Click Settings to select the programming algorithm. Poreifme T feondn

10. Select Add and select the appropriate SAM3 Flash if necessary B .- A oa™w”

as shown here: . —

11. ATSAM3X512kB Flash is for the SAM3X-EK board.

12. Click on OK once. e paEes | seprEe
TIP: To program the Flash every time you enter Debug mode, check
Update Target before Debugging.

13. Click on OK to return to the pVision main screen.
TIP: The Trace tab is where you configure the Serial Wire Viewer —

(SWV). You will learn to do this on pages 7 and 12.

Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

2)

Configuring a Keil ULINK2 or ULINK-ME: Keil example programs are configured for ULINK2 by default.

Serial Wire Viewer is completely supported by these two adapters. They are essentially the same devices electrically and

functionally. Any reference to ULINK2 here includes the ME. The ULINKpro, which is a Cortex-M ETM trace adapter, can

be used like a ULINK2 or ULINK-ME. The ETM program trace frames will not display as SAM3 processors do not have

ETM trace. A ULINK?2 is pictured on page 1.

Assume a ULINK?2 is connected to a powered up Atmel target board, pVision is running in Edit mode (as it is when first
started — the alternative to Debug mode) and you have selected a valid project as described in the exercises.

Select the debug connection to the target:

1. Select Options for Target &N or ALT-F7 and select the Debug tab.
In the drop-down menu box select the ULINK as shown here:

2. Select Settings and the next window below opens up. This is the

I Linker Debug |L|ti|'rties|

x|

| % Use: [ULINK2/ME Cortex Debugger ¥| ~ Settings |

control panel for the ULINK 2 and ULINK-ME (they are the same).
3. InPort: select SWJ and SW. SWV will not work with JTAG selected.

In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the target

processor. If there is an error displayed or is blank this must be fixed before you can continue. Check the target
power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it or click
OK once to leave and then click on Settings again.

TIP: You can use JTAG if you do not intend to use SWV.
SWD and JTAG operate at approximately the same speed.

Configure the Keil Flash Programmer:
5. Click on OK once and select the Utilities tab.
6. Select the ULINK similar to Step 2 above.
7. Click Settings to select the programming algorithm.
8

Select Add and select the appropriate SAM3 Flash if
necessary as shown below on the right:

9. ATSAM3X512kB Flash is for the SAM3X-EK board.
10. Click on OK once.

TIP: To program the Flash every time you enter Debug mode, check Update target before Debugging.

11. Click on OK to return to the pVision main screen.
12. You have successfully connected to the SAM3 target.

TIP: The Trace tab is where you configure the Serial Wire
Viewer (SWV). You will learn to do this on pages 7 and 13.

Keil ULINK-ME

ULINK-ME is
available only as
part of a board kit
from Keil or
another OEM.

TIP: If you select ULINK or ULINKpro, and have the opposite
ULINK actually connected to your PC; the error message will say “No ULINK device found”. This message actually means

Debugl Trace Hash Download |

- Download Function
Loap © Emase Ful Chip
¥4 % Frase Sectors

Do not Erase

RAM for Algorithm

[+ Program
[Verfy
™ Resetand Fun

Start: | 20000000 Size: |(b0300

~ Programming Algorithm

Description

| Device Type I DeviceSizeI

Address Range |

ATSAM3X 512«B Flash

On-chip Flash 512k

00080000H - D0OFFFFFH

Start: [00080000 | Size:

(00080000

1|
Debug |Trace | Flash Download |
 ULINK USB - JTAG/SW Adapter SW Device
Serial No: |TIENERTS A IDCODE | Device Name Mave
SWDIO | @ (:2BA01477 ARM CoreSight SW-DP
ULINK Version: [ULINKZ © e]
Device Famiy: [Cortex-M Down
Firmware Version. |V1.42 & Automstic Detection 10 cope: |
¥ SWJ Por lm £ b arual Corfiguration Device Hame: I—
Max Clock: [5MHz 'I Add Delete Updatel IR e I
 Debug
Connect & Reset Options——————————————— - Cache Options Download Options
Connect: [Nommal | Reset: [Atodetect =] | | ¥ Cache Code [¥ Verfy Code Download
VIR [V Cache Memory | | I~ Download to Flash
=
Cortex JLink/JTrace Target Driver Setup x|

Help

that uVision found the wrong Keil adapter connected, and not that no ULINK was attached. Select the correct ULINK.

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

3) Configuring a Keil ULINKpro: This is configured the same way as a ULINK2 except for the two selection
entries. One is in the Debug tab (shown below) and the other in the Utilities tab.

1. Inthe Options for target in the Debug tab, select ULINK Pro Cortex Debugger as shown below.
In Settings, it is configured the same as a ULINK as described on the previous page.

Select the Utilities tab and select the ULINKpro and select the programming algorithm as done with the ULINK2.
Refer to the previous page for instructions.

TIP: If you select ULINK or ULINKpro, and have the opposite ULINK actually connected; the error message will say “No
ULINK device found”. This message actually means that puVision found the wrong Keil adapter connected.

TIP: A ULINKpro will act very similar to a ULINK2. The trace window [X
(Instruction Trace) will be quite different from the ULINK2 Trace Records. Linker Debug | Utities |

TIP: A ULINKpro must use “Serial Wire Output Manchester” as found inthe | & g [OLINK Fro Cortex Debugger v] | Seings |
Trace tab when the trace is enabled. If “Serial Wire Output UART/NRZ”
mode is selected, an error will be generated. |

A special adapter is provided with a ULINKpro to connect to the target standard 20 pin JTAG connector. This small adapter
is pictured below plugged into the SAM3X-EK JTAG connector.

TIP: A ULINKpro can be used to debug an ARM7 or an ARM9 but ETM trace will not be visible. ARM7 or ARM9
processors normally do not have SWV. Contact Keil technical support for SAM9 ETM trace support information.

TIP: uVision windows can be floated anywhere. You can restore them by setting Window/Reset Views to default. pVision
supports two display screens.

Keil ULINKpro

An ETM trace adapter that can be used as a ULINK2.

It has very fast Flash programming and an enhanced
Instruction Trace window that connects the trace frames to
your source code.

Instruction trace requires an ETM Trace Port (not available
on current SAM3 or SAM4 devices).
ULINKQpro supports Serial Wire Viewer (SWV) with all

Atmel Cortex-M3 and Cortex-M4 devices. ULINKpro offers

the best SWV support due to its use of Manchester encoding
for the SWO pin. Most other adapters, including ULINK2 use
UART encoding which is much slower.

Segger SAM-ICE
Equivalent to a Segger J-Link. (black case)

Serial Wire Viewer is supported in
hardware Version 6 or later.

Segger also has a new, faster J-Link Ultra.
It is configured the same way in pVision
as the J-Link is.

6 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

6) Serial Wire Viewer (SWV) Configuration:

The essential place to configure the trace is in the Trace tab as shown below. You cannot set SWV globally for pVision. You
must configure SWV for every project and additionally for every target settings within a project you want to use SWV. This
configuration information will be saved in the project. There are two ways to access this menu:

A. In Edit mode: Select Options for Target &N or ALT-F7 and select the Debug tab. Select Settings: on the right side
of this window and then the Trace tab. Edit mode is selected by default when you start pVision.

B. In Debug mode: Select Debug/Debug Settings and then select the Trace tab. Debug mode is selected with @ .

1) Core Clock: The CPU clock speed for I
SWV. The CPU speed can be found in Debug Trace | Flash Download |
your startup code or in Abstract.txt. Itis

USUa"y called SYSCLK or Main Clock. 1 Core Elock:l £4.000000 MHz 2 ¥ Trace Enable 7
It is 84 MHz for SAM3X-EK. E;Trace Part Timestamp: Trace Events
ISeriaI wire Output - UART /MEZ j V¥ Enable Prescaler: I‘I 'l [~ CPI: Cycles per Instuction
2) Trace Enable: Enables SWV and ITM. I EXC: Exception overhead
- - S0 Clock Prescaler: I a3} PC Sampling—————— i
It can only be changed in Edit mode. I~ SLEEP: Sleep Cycles
, v Autodetect A Frescaler IW : :
This does not affect the Watch and 5w Clocke [1163638 MMz | |y paddc. Peicc [Dnabd I LSLE: Laad Stre L Cycles
Memory WindOW dlsplay Updates. eriodic Period: | <Disabled: [~ FOLD: Foldedlns.tructlons.
™ on Data RAW Sample [~ EXCTRC: Exception Tracing
3) Trace Port: This is preset for ULINK2. EE—— a B
- Imulus Fort: L4
i - H il Port 24 23 Part 16 15 Port 8 7 Port 1]
4) Timestamps: Enables t.lmeStamps and Enable: |0-FFFFFFFF 72 7 7 17 72 7 vl 7 7 7 7 7 7l 7 7 7 7 7 7 7l 7 7 7 T
selects the Prescaler. 1 is the default. Privilege: [0400000008 Fot3l.24 W Fot23d61 Pati5.8 Fo7.0
5) PC Sampling: Samples the program
counter.
oK Cancel Hel
a. Prescaler 1024*16 (the | | [Coree]

default) means every 16,384" PC is displayed. The rest are not collected.
b. Periodic: Enables PC Sampling.

On Data R/W Sample: Displays the address of the instruction that caused a data read or write of a variable
listed in the Logic Analyzer. This is not connected with PC Sampling but rather with data tracing.

6) ITM Stimulus Ports: Enables the thirty-two 32 bit registers used to output data in a printf type statement to
pVision. Port 31 (a) is used for the Keil RTX Viewer which is a real-time kernel awareness window. Port 0 (b) is
used for the Debug (printf) Viewer. The rest are currently unused in pVision.

e Enable: Displays a 32 bit hex number indicating which ports are enabled.
e Privilege: Privilege is used by an RTOS to specify which ITM ports can be used by a user program.

7) Trace Events: Enables various CPU counters. All except EXCTRC are 8 bit counters. Each counter is cumulative
and an event is created when this counter overflows every 256 cycles. These values are displayed in the Counter
window. The event created when a counter wraps around is displayed in the Instruction Trace window.

a. CPI: Cycles per Instruction: The cumulative number of extra cycles used by each instruction beyond the
first, one including any instruction fetch stalls.

b. Fold: Cumulative number of folded instructions. These results from a predicted branch instruction where
unused instructions are removed (flushed) from the pipeline giving a zero cycle execution time.

c. Sleep: Cumulative number of cycles the CPU is in sleep mode. Uses FCLK for timing.
EXC: Cumulative cycles CPU spent in exception overhead not including total time spent processing the
exception code. Includes stack operations and returns.

e. LSU: Cumulative number of cycles spent in load/store operations beyond the first cycle.

f. EXCTRC: Exception Trace. This is different than the other items in this section. This enables the display
of exceptions in the Instruction Trace and Exception windows. It is not a counter. This is a very useful
feature to display exception events and is often used in debugging.

TIP: Counters will increment while single stepping. This can provide some very useful information.
TIP: If you have any lockup problems with a ULINK2 or ULINK-ME when using SWV, and these problems disappear when

SWV (Trace) is not enabled, your laptop might have some USB port speed issues. Desktop computers are not affected. You
can add an external USB PCMCIA card to a laptop, use a ULINKpro, J-Link or SAM-ICE to solve this problem.

7 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

7) Blinky example program using the Atmel SAM3X-EK and ULINK2:
Now we will connect a Keil MDK development system using real target hardware and a ULINK2 or ULINK-ME.
1. Connect the equipment as pictured on the first page.

Start pVision by clicking on its desktop icon. ﬂ
Select Project/Open Project. Open the file C:\KeilARM\Boards\Atme\ATSAM3X-EK\BIlinky\Blinky.uvproj.

-

4. Make sure “SAM3X Flash” is selected. =~ >*"=*Flash
This is where you create and select different target configurations such as to execute a program in RAM or Flash.

5. Configure your USB-JTAG adapter at this point if you are not using a ULINK2. ULINK2 is selected by default. See
pages 4 through 6. Make sure SW is selected and not JTAG in the Port: box. This is an important step later for
Serial Wire Viewer (SWV) operation. If you do not use SWV, you can select JTAG.

LOAD

7. Program the SAM3X flash by clicking on the Load icon: #¥# Progress will be indicated in the Output Window.

8. Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not for RAM operation if it is chosen.

9. Click on the RUN icon. El Note: you stop the program with the STOP icon. D]
The LEDs on the SAM3X-EK will now blink.

1. Rotating the potentiometer VR1 will change the speed the LEDs blink. The pot is connected to an A/D convertor.

2. The A/D value will also be displayed on the LCD as shown below: This is the local variable ad_val in main().

3. Pressing the Left Click (BP5) and Right Click (BP4) buttons will enhance the Buttons icon on the LCD.

SAM3X-EK Demo

Now you know how to compile a program, program it into the ATSAM3X processor Bl ink y
Flash, run it and stop it ! www_ keil com

This program will now run stand-alone on the SAM3X-EK if you remove the debug adapter BS . aiue Ox0ABD
and RESET the board. Blinky is permanently programmed in the device flash memory.

8) Hardware Breakpoints: Buttons :USR-LEFT

The SAM3X has six hardware breakpoints that can be set or unset on the fly while the peR GHT;
program is running.

1. With Blinky running, in the Blinky.c window, click on a darker block in the left margin in either the disassembly or
an appropriate source window.

Disassembly a X‘
2. Arred circle will appear and the |
. 0x00080E7C 2000 MOVS 0, $0x00
program will stop. 0x00020E80 7008 STRE 0, [£1, $0x00]
89: ad avg += AD last << §; /* Add AD value to averaging
3. Note the breakpoint is displayed in Moxocosomsz 4se2 | LDR | z0,(pc,#392] ; @0x0008100G
. 0x00080E8¢ §800 LDRE 0, [x0, #0x00]
both the disassembly and source 0x00080EB6 ES062600 ADD r6,16,r0,LSL #8
: . 90: d_avg ++:
windows as shown here: el | 0oicen 1o~ amps e, ze, st
- - 91: if ({ad avg & OxFF) == 0x10) { /* average over 16 values *
4. Every time you click on the RUN 0x00080E6C BIFO TXTE 0,16
00080EEE 2810 cHE 0. #0x10 hd
icon the program will run until Eliy L'_I

@LDisassembly ﬂLJg\' Analyzer ‘ E Instruction Trace | E Trace Data |

the breakpoint is again encountered.
] Abstractot | [F] startup_samsxs ’ [#] Binkye | [coreemsn |] Glep_iebitte samsxe | [F] senale | v %

5. Remove the breakpoint by clicking 0 while (1) ¢ /* Loop forever < o
- 084
on It 035 /* AD converter input =/
. 086 if (RD done) { /* If conversion has finished =/
TIP: A hardware breakpoint does not execute 087 AD_done = O
- - .y - 088
the instruction it is set to. ARM CoreSight s ad avg 4= AD last << 8; G FE S T TN et S
H H H 0sn ad avg ++;
preakpomts are no—skld_. This isa rather N P i & ourr) — oein) .
important feature. Earlier versions of pVision o 2d_val = (ad avg >> 8) >> & 3 4
. - . ad avg = U; h
required a double-click to set a breakpoint. { Ll_l
8 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

9) Call Stack + Locals Window:

Local Variables:

Starting with MDK 4.22, the Call Stack and Local windows are incorporated into one integrated window. Whenever the
program is stopped, the Call Stack + Locals window will display call stack contents as well as any local variables belonging to
the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The
Call + Stack window presence or visibility can be toggled by selecting View/Call Stack window.

1. Runand Stop Blinky. Click on the Call Stack + Locals tab.

2. Shown is the Call Stack + Locals window. Call Stack + Locals
3. The contents of the local variables are displayed as fiame | LoationNValue | Tpe
= % main Ox00080DAD int f[)

well as function names.

----- W ad_avg auto - unsigned int

4. Inthis example, the LCD displayed 0x0172 as does @ ad_val 00172 auto - unsigned shart
- W ad_val_ 0x0172 auto - unsigned short

the local ad_val as shown in the window here: e===> b auto - unsigned short

5. Two buttons are Left and Right are depressed when ot auto - unsigned shart
the program was run and variable but = 0x0003.

6. As you click on RUN and STOP, with the pot turned FaCallstack + tocals | weten 1 |
and different switches pressed these variables will update as appropriate.

Set a breakpoint in Blinky.c near line 109 (GLCD_SetTextColor(Red);) as shown below.

Memory 1 |

Click on RUN. The program will soon stop at the Blink.c | o] Abstracttt | 2] startup SANDXs | [2] Serimbe | © X
H H H . Tl} 105 ad val = ad wval;
breakpoint. Click on the Step Inicon or F11: 0 vaTve-ma vei; =l
. H H 107
9. Note the function GLCD_SetTextColor is displayed. o sprintt(text, "OxE04X", ad val): e
10. Click numerous times on Step In and see other functions. |9 #ifdef USE_LCD
11D GLCD SetTextColor (Red):
{'i.l 111 GLCD DisplayString (4, g, _ FI, (on=signed -l
11. Click on the StepOut icon to exit all functions to L enqar o mareRR (183, SEAE, 176, 2D, (advel g
return to main(). mE @ v

12. When you ready to continue, remove the hardware breakpoint by clicking on its red circle !

TIP: You can modify a variable value in the Call Stack & Locals window when the program is stopped.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your code
are required. Update while the program is running is not possible with local variables because they are usually stored in a
CPU register. They must be converted to global or static variables so they always remain in scope.

Call Stack:

The list of stacked functions is displayed when the program

Call Stack + Locals

R .. MName Location/Value Type
1S StOpped a? you ha_/e seen. This is useful when you need El- W GLCD_SetTextColor | 0x00050714 void flunsigned short)
to know which functions have been called and are stored on L9 color 0xF300 param - unsigned short
the stack. - % main 0x00080DAD int 10

¥ ad_avg 000000000 auto - unsigned int

W ad_val 00171 auto - unsigned short

TIP: You can modify a variable value when the program is o @ ad val 00171 auto - unsigned short

- ¥ but 00000 auto - unsigned short

stopped.
TIP: You can access the Hardware Breakpoint table by @ bt 040000 auto - unsigned short
clicking on Debug/Breakpoints or Ctrl-B. This is also where .
Watchpoints (also called Access Points) are configured. 141 Call Stack + Locals | Watch 1 | [Memaory 1
You can temporarily disable entries in this table.
Selecting Debug/Kill All Breakpoints depletes Breakpoints but not Watchpoints.
9 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

10) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M3 processors. It is also possible to “put” or insert values into these memory
locations in real-time. It is possible to “drag and drop” variable names into windows or enter them manually.

Watch window:
Add a global variable: Recall the Watch and Memory windows can’t see local variables unless stopped in their function.

Stop the processor Q and exit debug mode. @
Declare a global variable (I called it value) near line 30 in Blinky.c like this: unsigned int value =0

1

2

3. Add the statement value = ad_val; as shown here near line 106 -
4

104 if (ad_val - ad_val_:l i
Click on Rebuild icon and program the Flash with the Load icon. b= ad_val = =d val;
value = ad val;

107
5. Enter Debug mode @ Click on RUN if desired. You can set a

Watch window while the program is running. You can do this with a Memory window too.
Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.
In Blinky.c, block value, click and hold and drag it into Watch 1. Release it and value will be displayed as shown

here: o=

8. Rotate the pot and value will change in real-time. Mame Value Type
TIP: Make sure View/Periodic Window Update is selected. o @ value oLl
L« Enter expressions

9. You can also enter a variable manually by double-
clicking under Name or pressing F2 and using copy
and paSte or typmg the variable. u@-'j-[all Stack = Locals | Wateh 1 | [Memory 1 |

10. Another way is to right click on the variable and
select Add var name to ...

TIP: To Drag “n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

6. Double click on the value for value in the Watch window. Enter the value 0 and press Enter. O will be inserted into
memory in real-time. You will probably not see the change as this value is constantly updated by the program.

Memory window:
1. Drag ‘n Drop value into the Memory 1 window or enter it manually. Select View/Memory Windows if necessary.

2. Note the value of value is displaying its address in Memory 1 as if it is a pointer. This is useful to see what address
a pointer is pointing to but this not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown (0x2000_0024).
Right click in the memory window and select Unsigned/Int.
5. The data contents of value is displayed as

shown here: ¢ —

6. Both the Watch and Memory windows are Address: |&Va|._|e D i’
updated in real-time.

0x20000024: 0000087TEB 38307830 00004237 00000000

7. You can modify value in the Memory window 0x20000034: 00000000 00OCCO00 0O00OCOOO 000000O0Q
with a right-click with the mouse cursor over the |oxz0000044: 00000000 00000000 00000000 00000000
data field and select Modify Memory. 0x20000054: 00000000 00000000 00000000 00000000

00000000 LI

Ox20000064: 00000000 00000000
1 Call Stack + Locals | Watch 1 |

TIP: No CPU cycles are used to perform these operations.
See the next page for an explanation how this works.

TIP: To view variables and where they are located use the Symbol window. Select View/Symbol Window while in Debug
mode.

Serial Wire Viewer does not need to be configured in order for the Memory and Watch windows to operate as shown. This
mechanism uses a different feature of CoreSight than SWV. These Read and Write accesses are handled by the Serial Wire
Debug (SWD) or JTAG connection via the CoreSight Debug Access Port (DAP), which provides on-the-fly memory accesses.

10 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

11) How to view Local Variables in the Watch or Memory windows:
1. Make sure Blinky.c is running. We will use the local variable but_ (has underscore after it)
2. Locate where the local variable but_is declared in Blinky.c near line 59, at the start of the main function.

3. Drag and Drop but_ into Watch 1 window. Note it says “not in scope”
. . - - - - - Mame Value Type
because pVision cannot access the CPU registers while running which is ¢ value Gx00000903 ansgned it
where value is located. L e oressons | wnaanes et
4. Stop the program and a value of 0x0 will probably appear. o ol Stk = Locals | Walehd)| T Meror 1 |

5. Start the program, hold down the left or right click button and then stop the program. A value of 1, 2 or 3 will
display. Make sure you do not hit the RESET button instead !

6. Note that sometimes the correct value does not show depending on where the program stops and when but_ is
sampled.

7. Start the program and set a breakpoint in the SER_PutChar function in Serial.c near line 104. The program will stop
and <not in scope > appears. You can open Serial.c in the Project window or by selecting File/Open.

TIP: Remember: you can set and unset hardware breakpoints on-the-fly in the Cortex-M3 while the program is running !

8. MVision is unable to determine the value of but_ when the program is running because it exists only when main is
running. It disappears in functions and handlers outside of main. But_ is also a local or automatic variable and this
means it is probably stored in a CPU register which pVision is unable to access during run time.

9. Remove the breakpoint and make sure the program is not running 0 Exit Debug mode. @
How to view local variables updated in real-time:
All you need to do is to make but_ static !
1. Inthe declaration for but_ add static like this: you will have to separate the declaration of but from but_.
int main (void) {
uintl6é_t but = 0;
static uintl6_t but_ = OxFFFF;
TIP: You can edit files in edit or debug mode. However, you can compile them only in edit mode.

2. Compile the source files by clicking on the Rebuild icon. They will compile with no errors or warnings.
LoAD

3. To program the Flash, click on the Load icon. ¥#. A progress bar will be displayed at the bottom left.

TIP: To program the Flash automatically when you enter Debug mode select Options For Target EAN , select the Utilities tab
and select the “Update Target before Debugging” box.

4. Enter Debug mode. @ You might have to re-enter but__ in the Watch 1 window if it is no longer displayed because
it isn’t the same variable anymore — it is now a static variable instead of a local. Drag ‘n Drop is the fastest way.
With later versions of pVision, you do not have to reenter it because they are now fully qualified when entered.

Click on RUN.

but_ is now updated in real-time. Press the Left and Right click buttons separately and also together. 1, 2 and 3 will
display appropriately and in real-time. This is ARM CoreSight technology working.

7. Stop the CPU and exit debug mode for the next step. D] and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.

How It Works:

MVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M3 is a Harvard architecture.
This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed, there is plenty of
time for the CoreSight debug module to read or write values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

11 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

12) View Variables Graphically with the Logic Analyzer (LA):
We have seen the program Blinky display the variable ad_val on the LCD. We will display this in the Logic Analyzer.
Recall we created the global variable value that tracks ad_val. We will plot value since ad_val is a local.

1. Stop the processor and exit Debug mode. Q @
Configure Serial Wire Viewer (SWV): The LA uses SWV to collect the data:

2. Select Options for Target AN or ALT-F7 and select the Debug tab. Select Settings: on the right side of this window.
Confirm SWJ and SW is selected (J-Link has no SWJ). SW selection is mandatory for SWV. Select the Trace tab.

3. Inthe Trace tab, select Trace Enable. Unselect Periodic and EXTCRC. Set Core Clock: to 84 MHz. Confirm

everything else is set as in this window: X
. i i Debug Traoe | Fiash Dowrioad |
4. Click OK twice to exit.
Core Clock | 84.000000 MHz ¥ Trace Enable
r Trace Port T Trace Event:
5' Enter debug mOde @ Serial Wire Output - UART/NRZ + ¥ Enable Prescaler: (64 + [CPI: Cycles per Instruction
. . = r 2 ion overheat
Configure Logic Analyzer: SWO Gk rscder [72 T S i
i . . . o Proscaler: 102615 (71 | || - |51 Lo Stre Ui Cyckes
1. Open View/Analysis Windows and select Logic SWO Gl [1166666 MHz | [~ poiory Porod [<Deableds | | FOLD: Fokded hsuctions
- ™ on Data RW Sample [~ EXCTRC: Bxception Tracing
Analyzer or select the LA window on the toolbar. ——
))) 3 Pot 2423 Pot 1615 Pot 8 7 Pot O
2. Click on the Blinky.c tab. Block value, click, hold and Frec | i FIRERNE MRS RS M
. ’ Privilege: | (00000008 Port 31.24 v Port 23..16 Port 15..8 Port 7.0
drag up to the Logic Analyzer tab (don’t let go yet!) = ! ' * '
3. When it opens, bring the mouse down anywhere into the — —
Logic Analyzer window and release. :
x|
Click on the Select box and the LA Setup window appears: [y re—— =
5. With value selected, set Display Range Max: to OXFFF as shown here:
6. Click on Close. Click on Run.
Run Program: Note: The LA can be configured while the program is running.
N — i
1) Click on Run. Click on Zoom Out until Grid is about 1 second. e e —
) Display Type: |Anzlog h Max: DFFF
2) Rotate the pot and see the window below. Coor [N |vin: Co—
. . . . ™ Hexadecimal Displ
TIP: You can show up to 4 variables in the Logic Analyzer. These variables must be ug,,.a,F,,mu.a(,;i::im,>>sm
global, static or raw addresses such as *((unsigned long *)0x20000000). AndVask: [eFFFeReFE | SRAghs o
. . .. Export / Impor
3) Recall we made but_ a static variable. Enter this into the LA and set the (E,:,M;g:al ercrs.. | ot Sore Defntions |‘
Display Range Max: to 0x4. Press the buttons and see the voltages.

kA | coes |

Help

4) Select Signal Info, Show Cycles, Amplitude and Cursor to see effects. Stop

the CPU and stay in debug mode for the next exercise.

Logic Analyzer

ISe‘tup | Load ... Min Time Max Time Grid Zpom

Code Setup Min,/Max Update Screen| Transition) Sicgrad info || Amplticle
Save .||[Os [61.65398s Ts |[in][out][Al]|[Show | [Auto][Undo || [Step | I~ Show Cycles [Cursor
4095 : : : : : : ! ! ! ! : ! !

valug

0 : : : : : : - : : - : : :
19.25491s ' ' : : | 26254918 : : : : : 347254915

5] | n

@Disassenmly | QLogicAnalyzer

12 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

13) Watchpoints: Conditional Breakpoints

SAM3 and SAMA4 processors have 6 hardware breakpoints. These breakpoints can be set on-the-fly without stopping the
CPU. The SAM3X also has four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic

Analyzer uses the same comparators as Watchpoints in its operations. This means in pVision you must have two variables

free in the Logic Analyzer to use Watchpoints. Watchpoints are also referred to as Access Breaks.
Use the same Blinky configuration as the previous page. Stop the program if necessary. Stay in debug mode.
We will use the global variable value you created in Blinky.c to explore Watchpoints.

1.

© o N o gk wN

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

The Trace does not need to be configured for Watchpoints. However, we will use it in this exercise.

The variable value should be in the to the Logic Analyzer from the last exercise on the previous page.

Select Debug in the main pVision window and select Breakpoints or press Ctrl-B.
In the Expression box enter: “value == 0x500” without the quotes. Select both the Read and Write Access.
Click on Define and it will be accepted as shown here: =) I

Click on Close.

Enter the variable value to the Watch 1 window by dragging

and dropping it if it is not already there.

Click on OK twice. Open the Trace Records window.

Click on RUN. Rotate the pot so 0x500 is displayed on the

LCD. You might have to adjust the pot very carefully.

You will see value change in the Logic Analyzer as well as in

the Watch window.

. Open Debug/Debug Settings and select the trace tab. Check
“on Data R/W sample”, uncheck EXTRC and ITM 31 and 0.

x|
Currert Breakpoints:
- 00 (A readwrite (20000024 len=4)... value == xa00
|
Access
Expression: I I Read [~ White
Court: |1 B Size:

= = 3 = [~ Eytes

Command: I = | Obiects

Defne | | Kl Gelerted |

Kill All

When value equals 0x500, the Watchpoint will stop the program. The LCD might not display exactly 0x500 due to

sample timing.

Note the data writes in the Trace Records window shown below. 0x500 is in the last Data column. Plus the address
the data written to and the PC of the write instruction. This is with a ULINK2 or ULINK-ME.

There are other types of expressions you can
enter and are detailed in the Help button in
the Breakpoints window.

To repeat this exercise, click on RUN and
rotate the pot again.

When finished, stop the program, click on

x

Type

| ovi [Num Address

Data

PC

Cycles

I Time[s

Data Wrte
Data Write
Data Write
Data Write:
Data Wrte
Data Write
Data Wite
Data Write:

20000024H
20000024H
20000024H
20000024H
20000024H
20000024H
20000024H
20000024H

Debug and select Breakpoints (or Ctrl-B) and Kill the Watchpoint.

Leave Debug mode.

Q0DOO4EFH
000005 14H
00000520H
00D00575H
00000552H
00000545H
00DDDSCTH
00D00S00H

D00B0EC4H
D00BOEC4H
D00BOECEH
D00BOECAH
D00B0EC4H
D00BOEC4H
D00BOEC4H
D00BOECAH

€3¢ 3¢ 3¢ 3¢ 3¢ 3 % |2

7095573065
7122334602
7135774667
7149214604
7162654605
7176094670
7183534671
7202974672

2447110732
8478965764
84.54965842
8510969767
85.26969768
85.42965845
85.58965846
8574965848

Note the J-Link or SAM-ICE will not display the writes in the Trace Records window. Watchpoints do work.
TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

a

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the

configuration area. Clicking on Define will create another Watchpoint. You should delete the old one by highlighting it and

click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression allows you to

temporarily unselect or disable a Watchpoint without deleting it.

TIP: Raw addresses can also be entered into the Logic

Analyzer. Anexample is: *((unsigned long *)0x20000000)

Shown here is the Logic Analyzer window displaying the

variable value trigger point of 0x500.

The cyan arrows point to when the Watchpoint trigger value
equals 0x500.

Min Time

value

137.8019s

]
@Ei:a::emh\, ‘ ﬂLugicAna\yzer

Max Time:

Grid

| 1418019

Zoom

15.09524 us [146.54995 s E

Code

Setup Min/Max

[

146.8019s

n x|

Upda

|+

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit

13

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

14) RTX_ Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included as part of Keil MDK including source. It can have up to 255 tasks
and no royalty payments are required. This example explores the RTX RTOS project. MDK will work with any RTOS. An
RTOS is just a set of C functions that gets compiled with your project.

With pVision in Edit mode (not in debug mode): Select Project/Open Project.
Open the file C:\KeilNARM\Boards\Atme\SAM3X-EK\RTX_Blinky\Blinky.uvproj.

If you are not using a ULINK2 or ULINK-ME, you now have to configure uVision for the adapter you are using.
You only have to do this once — it will be saved in the project file. You can also make a new target configuration.

LopD
5. To program the Flash manually, click on the Load icon. ¥#. A progress bar will be at the bottom left.

SAM3X-EK Demo

6. Enter the Debug mode by clicking on the debug icon @ and click on the RUN

RTX Blinky
icon. waw _keil . com
7. The LCD display will indicate the four waveforms of a stepper motor driver Y)
changing. Click on STOP o i
The Configuration Wizard for RTX: { |
1. Click onthe RTX_Conf CM.c source file tab as shown below on the left. You can open it with File/Open if needed.
2. Click on the Configuration Wizard tab at the bottom and your view will change to the Configuration Wizard.
3. Open up the individual directories to show the various configuration items available.
4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
5. Changing an attribute in one tab changes it in the other automatically. You should save a modified window.
6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
8. The pVision System Viewer windows are created in a similar fashion. Select View/System Viewer.
/ RTX_Conf_CM.c] v X | Blinky.c RTX_Conf_(M.c | v x
091 #ifndef 05 TICE = wpan Ollapse B
0s2 #define OE_TICK 10000 j ﬂl MI w
083 #endif Option | Value
084 “Task Definitions
s /7 </ h> %--Numhar of coneurrent running tasks 7
036 // <e>Round-Robin Task switching Mumber of tasks with user-provided stack a
17— _ é--Taskstacks\ze [bytes] 200
088 // <i> Enable Round-Robin Task switching E"Chec_kfm t_he stack overfiow ||Z
065 +:ender 05 zosTy U
030 #define OS—ROBIN 1 J -S‘y:sT\ckTimErCnnFiguratiﬂn
031 #endif Timer clock value [Hz] 72000000
032 . Timer tick valuz [us] 10000
093 s/ <o>R Round-Robin itchinig v
03 s <i> ¥ - Round-Robin Timeout [ticks] 5
0 s <1»> Default: &
095 #ifndef 05_ROBINTOUT
097 #define C5_ROBINTOUT 5
J;T_?ﬂ fendif ;IJ Text Editor), Configuration Wizard
*\ Tt Bditor #,Configoraton Wizere
Text Editor: Source Code Configuration Wizard
14 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

15) RTX Kernel Awareness using RTX Viewer

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS
companies also provide awareness plug-ins for pVision.

1.
2.

Run RTX_Blinky by clicking on the Run icon.

Open Debug/OS Support and select RTX Tasks and System
and the window on the right opens up. You might have to
grab the window and move it into the center of the screen.
Note these values are updated in real-time using the same
technology as used in the Watch and Memory windows.

Open Debug/OS Support and select Event Viewer. There is
probably no data displayed because SWV is not configured.

RTX Viewer: Configuring Serial Wire Viewer (SWV):
We must activate Serial Wire Viewer to get the Event Viewer working.

1.
2.

© N oo

10.
11.
12.
13.

14.

Stop the CPU and exit debug mode. o @

Click on the Options icon AN next to the target box.

Select the Debug tab and then click the Settings box next to
ULINK2/ME Cortex Debugger dialog.

In the Debug window as shown here, make sure SWJ is
checked and Port: is set to SW and not JTAG.

Click on the Trace tab to open the Trace window.
Set Core Clock: to 84 MHz and select Trace Enable.
Unselect the Periodic and EXCTRC boxes as shown here:

ITM Stimulus Port 31 must be checked. This is the method
the RTX Viewer gets the kernel awareness information out to
be displayed in the Event Viewer.

Click on OK twice to return to pVision.
The Serial Wire Viewer is now configured in pVision.

Enter Debug mode and click on RUN to start the program.
Select “RTX Tasks and System” tab: the display is updated.
Click on the Event Viewer tab.

This window displays task events in a graphical format as
shown in the RTX Kernel window below. You probably have
to change the Range to about 1 second by clicking on the
ALL, Inand Out icons.

Close these windows when you are done for the next exercise.

TIP: View/Periodic Window Update must be selected !

TIP: To find the Core frequency, open the file System_SAM3S.s and
install the global variable SystemFrequency in the Watch window.

Cortex-M3 Alert: The ATSAM3 will update all RTX information in
real-time on a target board due to its Serial Wire Viewer and read/write
capabilities as already described.

You will not have to stop the program to view this data. No CPU

cycles are used. Your program runs at full speed. No instrumentation
code needs to be inserted into your source. The Event Viewer uses the
ITM Stimulus Ports which is slightly intrusive. You will find this feature very useful. You can use a ULINK2, ULINK-ME,
ULINKQpro, J-Link or SAM-ICE for RTX Kernel Awareness windows.

BT Torsden smned Sypste

Tiener Number: .I! |
Tk Taver: 10,000 e
Rinund Rohin Timeout: .Sﬁ.fIT-NF\H
'.kafl".c_e: .;‘}J
Susch velh Usem-paavided Stk 0
Sack Croerfins Check: Lves
Tk Usage- _irﬁ&-e 7, Used: &
User Tarers: Arvslatie: 0, Lie: 0
T Pty Hete Dby Lverk Vet Lyerdt Mask Stack Losd
75 |os_ide_senen 0 Farriy o
led 1 [| £
.mcl. i 1 .\-\‘ﬁ NIJ :Jt".l.l.l.‘ .l?\‘J]LIJ | J;.'Fo
5 |phme0 1 wat v N 000 (00001 |40
1 |phawc 1 | Wt gy i | 001 |
3 |phased 1 Wt AND T |0 Tw
T N v vor
@evint | BT Tashs ol System |
51
Debug | Trace | Flash Download |
- ULINK USB - JTAG/SW Adepter —| -5W Devi
Seisl Ho: [\1447T3E = IDCODE |_Device Name e
SWDI0| @ 0:28501477 ARM CoreSight SW/-OP
UILINK Versior: [OLINKZ O e |
Deviee Famib: [Cortextt Do)
Fimusate ersion: [11.37 & Automatic Detestion 1D/ CODE
W swi Pon: | ~ € Manudl Configuration— Device Name:
Mas Clack: [1MHz = Add | | Delete | [Update| 1Rl
- Debug
Connect’ResstOptions | Cache Oplions——| - Dowrload Options
Connect: | Normal x| Resst[HwRESET x| | | ¥ Cache Code [¥ Veify Code Dowrload
| Floset after Connect ¥ Cache Memory | | [Downloadto Flash
X
Debug Trce | Flash Dowrload |
Core Clock: | 84.000000 Mz ¥ Trace Enable
~Trace Fort P Trace
Senial Wirs Output - UART/NRZ ¥ IV Enable Prescaen:[1 v I~ CPI: Cycles per Instruction
SWO Clock Prescaler: [72 FC Somping——————————— WEE Emznm sz
T I~ SLEEF: Sleep Cycles
> Prescale: 102416 7] I~ LSU: Load Store Uinit Cycles
SWO Clockc | 1168666 MHz | | = peogic Paniog: [<Dissbled> | | [~ FOLD: Folded nstructions
I on Data RAW Sample I~ EXCTRC: Exception Tracing
- ITM Stimulus Ports
31 Pot 2423 Pt 1615 Pot B 7 Pt D
Enable: | &xFFFFFFFF {5272 % 2 7 2 2l 7 7 o Ol 2 o v 7
Privilege: [200000008 Pot31.24 ¥ Pot23.16 [Port 15.8 [Pt 7.0
Load.. Min Time: Max Time Grid Zoom Code Update Screen Transition ™ cursor n
Save... ||[0-4604845 [29.960325 [O0.5s n |[ou Al || _show || _stop | clear | prev| Next]|~ show cyces

Al Tasks

phaszA @) |
(|

phaseB (3)

phaseC (4)
sae@ ||
wso ||l

led (7)

Idie (255)

2491132s
4

(255) 3XX|255) XX_zss) f § r255) %X_zss)

| zranas

(255) 90(.255) R s5)) ¥ (255) €><><_255) >

‘30411325
|

Event Viewer | RTX Tasks and System

15

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

16) Logic Analyzer Window: View variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire

Viewer in the ATSAM3. RTX_BIinky uses four tasks to create the waveforms. We will graph these four waveforms.
1. Close the RTX Viewer windows. Stop the program and exit Debug mode. The SWV must be configured.
2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

3. Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as 030 #define LED L 3
shown below: phasea=1; and phasea=0; :the first two lines are shown 3312 #define LED CLK '
added at lines 084 and 087 (just after LED_On and LED_Off function o . . . _ .
. ; unsigned int phasea = 0
calls). For each of the four tasks, add the corresponding variable 034 unsigned int phaseb = 0;
assignment statements phasea, phaseb, phasec and phased. 035 unsigned int phasec = 0;
4. We do this because in this simple program there are not enough suitable gg? unsigned int phased = 0;
global variables to connect to the Logic Analyzer.
TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: just make them
static. To see peripheral registers merely read or write to them and enter them into the Logic Analyzer.
L LOAD .
5. Rebuild the project. = program the Flash #% T e e i
07 Ao - - - -
6. Enter debug mode. @Q . g;ﬂ _tf:ask tvo]ica{pmasen (void) {
or P
You can run the program at this point. 3§§ E;Bi;:—'fi;;::?d (ouoREE, DeEEER) s
Open View/Analysis Windows and select Logic Analyzer or select the oo Signat_func (c_phases):
LA window on the toolbar. - s e e
Enter the Variables into the Logic Analyzer: ggg ’
9. Click on the Blinky.c tab. Block phasea, click, hold and drag up to
the Logic Analyzer tab (don’t let go yet!)
10. When it opens, bring the mouse down anywhere into the Logic Analyzer window and release.
11. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as shown.

Now we have to adjust the scaling.
12. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
13. Click on Close to go back to the LA window.

14. Using the All, Out and In buttons, set the range to 1 or 2 seconds. Move the scrolling bar to the far right if needed.
15. You will see the following waveforms appear. Click on Stop in the Update Screen box. Select the Show Info and

Cursor boxes. Click to mark a place See 152 s below. Place the cursor on one of the waveforms to obtain timi
other information as shown in the inserted box labeled phaseb as shown below by hovering over a location:

Logic Analyzer 3 x
Min Tme Max Time Grid Zoom Code | Setup Min/Max _ |Update Screen| Transiion | 1 g iy
[Erew]|[Aute][Unda |

[~ Show Cycles ¥ Cursor

[Save .| [2133975s [1856812s [25 [In |[Oat][A]

‘Slopl
3 oo E o

phasea

=

phaseb

=

|
phaseb
Mouse Pos Reference Point Delta ‘

phasec

Time: 1578412 5 13518125 2266 5 = 0.044131 Hz

H Value: 1 [1] 1 | E H 3
o : BCS: N/A N/A 0 d: : H :

3

phased

i I B

3935125 1528812 I :
@Di:as:':ml)l,- \ ﬂLog\cAnalyzer
TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.
TIP: Raw addresses can also be entered into the Logic Analyzer. An example is: *((unsigned long *)0x20000000)

168.8812s
|+

ng and

16 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

17) Serial Wire Viewer (SWV) and how to use it:
1) Data Reads and Writes: (Note: Data Writes but not Reads are enabled in the current version of pVision).

Currently, Summer 2012, the display of data read, write and ITM trace frames are not implemented in the J-Link or SAM-ICE.
You have already configured Serial Wire Viewer (SWV) on page 13 under RTX Viewer: Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with puVision and a ULINK2, ULINK-ME,
ULINKQpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. Your program runs at full
speed and needs no code stubs or instrumentation software added to your source code. Screens are shown using a ULINK2,

Use RTX_Blinky from the last exercise. Enter Debug mode and run the program if not already running.

Select View/Trace/Records or click on the Trace icon A - and select Records.

The Trace Records window will open up as shown here:

The ITM frames are the data from the RTX Kernel
Viewer which uses Port 31 as shown under Num.
To turn this off select Debug/Debug Settings and
click on the Trace tab. Unselect ITM Stimulus Port
31. TIP: Port 0 is used for Debug printf Viewer.

Unselect EXCTRC and Periodic.
Select On Data R/W Sample.
Click on OK twice to return.
Click on the RUN icon.

Double-click anywhere in the Trace records
window to clear it.

© N o gk~

9. Only Data Writes will appear now.
TIP: You could have right clicked on the Trace
Records window to filter the ITM frames out.
Unselecting a feature is better as it reduces SWO
pin traffic and therefore trace overflows.

What is happening here ?

1. When variables are entered in the Logic Analyzer
(remember phasea through phased ?), the reads
and/or writes will appear in Trace Records.

2. The Address column shows where the four

variables are located. T

3. The Data column displays the data values written to phasea through phased.

4. PCis the address of the instruction causing the
writes. You activated it by selecting On Data R/W
Sample in the Trace configuration window.

5. The Cycles and Time(s) columns are when these
events happened.

TIP: You can have up to four variables in the Logic
Analyzer and subsequently displayed in the Trace Records
window.

TIP: If you select View/Symbol Window you can see where
the addresses of the variables are. Yours might be different.

Note: You must have Browser Information selected in the
Options for Target/Output tab to use the Symbol Browser.

R
Records
Exreptions
Counters
B
Type [0w tum | Addess [Dala | FC [Op] Cyoles [Timels =
Data wiite 20000028H OODOOODTH 107630769 1.68173077
ITH 06H 107631243 168173817
ITH A FFH 107644897 168195152 4
ITM El 0EH 12736793 1.76151239
ITM El FFH 112750247 176172339
ITM 3 03H 133616915 218151430
ITH El 02H 133617453 218152342
Data Wiite 20000024 DO0OOODOH 133630790 218173109
ITH kil 0EH 139630965 218173383
ITH kil FFH 139644633 218194739
ITH kil 06H 144736793 226151239
ITH kil FFH 144750297 226172389
ITH A 03H 171616793 268151239
ITM El 04H 171617361 268152127
Data Wit 2000002CH DODOODDTH 171630771 268173060
ITM 3 0EH 171631245 2681735820
ITH 3 FFH 171644859 268195155
ITH El 0EH 1767367493 276151239
ITH kil FFH 176750297 276172339
ITH kil 04H 203618915 BRI
x
Type Tow [Nom | Addess | Dam | PC_ [y Cyoes [Tme] |-l
Data Witts 20000010H 00OOOODOH ODOBODBOH X 42344169535 51124011356
Data Wit 20000018H 00000OOTH OOOBODBOH X 42986168110 511.74009655
Data Wit 20000014H 000000OOH 00OSODS2H X 43028169491 51224011298 —I
Data Witte 2000000CH O00OOOOTH ODOBODIAH X 43070168110 512.74009655
Data Wiits 20000018H 0000OODOH O0OOBODCAH X 43112169515 513.24011327
Data Witte 20000010H 000000OTH ODOSODACH X 43155053641 513.75063258
Data Witte 2000000CH 0000OODOH ODOBODZEH X 43196167421 514.24008835
Data Wit 20000014H 00000ODTH ODOSOD7EH 43239008110 514.75009655
Data Witte 20000010H 000000DOH ODOSODEOH X 43281009515 51525011327
Data Witte 20000018H 00000OOTH ODOSODBOH X 43323008110 515.75009655
Data Witte 20000014H 000OOODOH ODOBODSZH X 43365009535 516.25011356
Data Wit 2000000CH 00000OOTH OOOBODIAH X 43407008110 516.75009655
Data Witte 20000018H 00000ODOH ODDSODCAH X 43449008431 517.25011299
Data Witte 20000010H 00DODODIH ODOBODACH X 43491893635 517.76063851
Data Wit 2000000CH 000000DOH OOOBOD2EH X 43533007421 518.25008835
Data Witte 20000014H 0000000TH ODOSOD7EH X 43575248110 512.76009655
Symbols X
Module / Mame Location Type
- SRC/CM/It_Time.c Module -]
14 SRC/CM/rt_Event.c Module
“8 SRC/CMIE_Task ule
=+ Module
. 9 phasea 0x2000000C unsigned int 3
- W phaseb 0x20000010 unsigned int |
- ¥ phasec 0220000014 unsigned int
phased 0x20000018 unsigned int
L 0x2000001C o5
- ¥ t_phaseB Q5_TID
- W t_phaseC |0x20000024 Q5 TID LI

TIP: ULINKpro, J-Link and SAM-ICE adapters display the trace frames in a slightly different style trace window.

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit

17

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com

2) Exceptions and Interrupts:

The ATSAM3 family using the Cortex-M3 processor has many interrupts and it can be difficult to determine when they are
being activated and how often. Serial Wire Viewer (SWV) on the ATSAM3 family makes this task easy.

1. Use the RTX_ Blinky example program. Be in Debug mode. Open Debug/Debug Settings and select the Trace tab.

2. Unselect On Data R/W Sample, PC X
Sample and ITM Ports 31 and 0. (this is to Debug Trce |

minimize overloading the SWO port)
Core Clock:l 84.000000 MHz ¥ Trace Enatile
3. Select EXCTRC as shown here:
 Trace Port T Trace Everts
CI |Ck OK thce Serial Wire Output - UART/NRZ j V¥ Enable F‘rescaler:|1 - [~ CPI: Cycles per Instruction
. ST TR : I—_ [~ EXC: Exception overhead
5. The Trace Records should still be open. o fe““f-l_ e PC Sampling —————— | [~ 5 £Ep. Sieep Cycles
Double click on it to clear it. ¢ futodstest Prescaer (102416 =1 | | [| g Lyad Store Unit ycks
A SWO Clock:| 1166666 MHz [~ Periodic F‘eriod:l <Disabled> [~ FOLD: Folded Instructions
CIICk RUN to Start the program ™ on Data R/W Sample ¥ EXCTRC: Exception Tracing
You will see a window similar to the one ~ITM Stimuus Ports
- - - 3 Port 24 723 Port 16 15 Port 8 7 Port 0
below with Exceptions frames displayed. Enatle [oTFFFFFe [ToWIVIo MWV RV [PV
What Is Happening D) Pﬁv—ilege:II}xI}DDDDDDE Port 31.24 [# Port 23.16 |~ Port 15.8 [Pot 7.0 ™
1. You can see two exceptions happening.
= Entry: when the exception enters. o« [coee | Lic0
= Exit: When it exits or returns. x|
. P Type Ovf [Num Address | Data | FC [y Cydes [Tmel |~
- Retu rn. When a" the exceptlons _ha_ve Exception Entry 15 46585391834 559.34950279
returned to the main program. This is Exception Ext 15 46985392117 559 34990615
. .. Exception Retum o X 46585394720 559.24593714
useful to detect tail-chaining. Excepton Erty s dsseeayiEa 350 3595027
eption Exi .
2. Num 11 is SVCall from the RTX calls. Booionfem X 0 X icmeess i
. . . Exception Ent " 46986248092 559.36009633
Num 15 is the Systick timer. Excoption Bt 1 45306246226 559.36009753
Datz Write 20000010H 0000DDDOH x 46986254112 559.36016800
In my example you can see one data write {Ssa g X o 3030028015
H Exception Exit 1" 46586263667 559.36028175
from the LOgIC Analyzer‘ Exc:pt:g: Retum X] x AR386267792 559.36033086
. . . Exception Entry 15 46587071834 559.36950279
Note everything is timestamped. Exception Bxit 15 45987072122 559.36390621
Exception Retum o X 46587074656 559.36993686
[TAV41EH H Exc Ent 15 46987911834 559.37930279
The “X” in Ovf is an overflow and some ham e 46337912117 558.37390615
data was IOSt. The “X” in Dly means the Exception Retum) k3 46987914720 ¥ 33714 LI

timestamps are delayed because too much
information is being fed out the SWO pin. Always enable the fewest SWO features to only those you really need.

TIP: The SWO pin is one pin on the Cortex-M3 family processors that all SWV information is fed out. There are limitations
on how much information we can feed out this one pin. These exceptions are happening at a very fast rate. pVision easily
recovers gracefully from these overflows. Overflows are shown when they happen.

V| Records

1. Select View/Trace/Exceptions or click on the Trace icon and select Exceptions. ety
2. The next window opens up and more information about the exceptions is displayed as shown below:

v | Exceptions

Counters

3. Note the number of times these have x|
happened under Count. This is very Num | Name | Court [Total Time | Min Time In | Max Time In [Min Time Out | Max Time Out | _First Time [s) | Last Time [s) [=
useful information in case interrupts |5 lra 0 0 ‘
come too fast or slow. 5 b 0 i
EXtIRQ are the perlpheral |nterrupts ?12 E\Z%gaj::uh 331 E}Etzms 1.555us 57.238us 181.905us 430.365ms 518.84D08663 559.86028219

5. You can clear this trace window by ig E’%ﬁ?ﬂ 41211 13.121:5.115 336905 8214us 9992ms 9997ms 51879930279 559.83390279
double-clicking on it. 17 BeRa 0 0:

6. All this information is displayed in % Eamos : o
real-time and without stealing any 2 Eimoe] i

23 EdRQT 0 Os |

CPU cycles or stubs in your code !

TIP: Num is the exception number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals,
start at Num 16. For example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 = 16 — 16 = ExtIRQ 0.

18 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.Kkeil.com

3) PC Samples:

Serial Wire Viewer can display a sampling of the program counter.

SWV can display at best every 64™ instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

Open Debug/Debug Settings and select the Trace tab.
Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.

1.

2.
3.
4

o

10.

11.

12.

Click on OK twice to return to the main screen.

Close the Exception Trace window and leave

Trace Records open. Double-click to clear.
Click on RUN and this window opens:

Most of the PC Samples in the example
shown are 0x0040_05E2 which is a branch
to itself in a loop forever routine.

Note: the exact address you get depends on
the source code and compiler settings.

Stop the program and the Disassembly
window will show this Branch as shown

below:

x
Type | 0wl | Murmn | Address | Data | FC | Dy | Cycles | Timnels] ﬂ
PL Sample 004005E 2H BRO35E38109 1344.30357045
PL Sample 004005E 2H BEO35E54493 1344.31022645
PL Sample 004005E 2H BEO3GETOETT 1344.31048245
PC Sample 004005E 2H 86035887261 134431073845
P Sample 004005E 2H BEO35A03645 1344.31095445
PC Sample 004005E 2H 86035920029 134431125045
P Sample 004005E 2H BE035936413 1344.31150645
PC Sample 004005E 2H 86035952737 134431176245
P Sample 004005E 2H BEO355ES181 1344.31201845
PL Sample 004005E 2H BRO35905565 1344.31227445
PL Sample 004005E 2H BEO3E001949 1344.31253045
PL Sample 004005E 2H BRO3E018333 1344.31278645
PL Sample 004005E 2H BEO3E034717 1344.31304245
PL Sample 004005E 2H BRO3E051101 1344.31328845
PL Sample 004005E 2H BEO3E0ET485 1344.31355445
P Sample 004005E 2H BEO3E083869 1344.31381045
PC Sample 004005E 2H 86036100253 1344.31406645
P Sample 004005E 2H BEO3ET1EE37 1344.31432245
PC Sample 004005E 2H 86036133021 134431457845
P Sample 004005E 2H BEO3E143405 1344.31483445 =~

Not all the PCs will be captured. Still, PC Samples can give you some idea of where your program is; especially if it

is caught in a tight loop like in this case.
Set a breakpoint in one of the tasks.

Disassembly

Run the program and when the breakpoint
is hit, you might see another address at the
bottom of the Trace Records window. See
the screen below:

Scroll to the bottom of the Trace Records

154:
155:
156:
157:

is58:
159:

/™ This function is called vhen the user timer has expired. Parameter b
/% ‘info' holds the value, defined when the timer was created.

/* HERE:

0x004005E0 BFOO
c0x004005E2 ETFE

include optional user code to be executed on timeout. */
HNOP

E

Ox004005EZ

i

window and you might see the correct PC value displayed. Usually, it will be a different PC depending on when the

sampling took place.
Remove the breakpoint for the next step.

] Disassembly

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit

www.keil.com

116: /
117: * Task 4 'phasel': Phase I output
118: "t
119: _ task void phaseD (void) ¢
M0x004007C2 2000 HOVS £0, #0x00
Dx004007C4 4378 LDR. £1, [pe, #4801 ; BOX0D0400946
0x004007C6 6008 STR 0, [r1, #0x00]
_Elxooqoovca E7E7 B Dx00400794
4
[Abstract.btt/ Blinky.c X r RTX_Conf_CM.c r LED.c]
093 05 _evt wait and [0xD001, OxEfff): /* wait For an event flaw OX000L */
094 LED_On (LED_B]: QEWESLIG x|
095 phaseb = 1;
0% signal func [t p | Tupe [ovi[Wum [Addiess | Data___| PC (Dl Cvcles [Timels Al
057 LED 0fZ (LED B); | PCSample 004005E2H 86348301159 1356 56720561
98 phaseb = 0: PE Gample O04005E2H 86348317543 1358567465161
o P Sl DM oewmmn IS
ample
1y PL Sample n04005E 2H OEGARICEEGE 1350 5GR22061
10 PC Sample 0D4005E 2H 85348383079 135856848561
102/ # = m e m e PE Gample O04005E2H 6348393463 135856874161
03] < Task 5 'pi |PCSample O04005E2H 6348416847 1350 56899761
el e T 7 PE Gample O04005E2H 86348432031 1358 56925361
1057]__task void phasec i |PCSample O04005E2H 6348448515 1350 56980961
& rer o) PE Gample O04005E2H 6348464339 1358 56976561
) PE Gample O04005E2H 86348481383 135857002161
107 os_evt_wait_end |pee . O04005E2H 86348497767 135857027761
108 LED_On [LED_CI: |PCSample O04005E2H 86348514151 1358 57053361
109 phases = 1; PE Gample O04005E2H 86348530535 1358 57078961
110 signal_fune (t_p | PCSample O04005E2H 6348546519 1356 57104561
11 LED_OfZ (LED_c]; | PCSample O04005E2H 86348563303 135857130161
12 e O @8 PE Gample O04005E2H 86348573687 1358 57155761
" i PE Gample O0400SE2H 6348596071 135857181361
A PE Gample 0O0400F72H 86348512455 1358 57205361 j
15
1B/
nz| o+ Task 4 'phaseD': Phase D output
g < </
19 Copyright © 2012 ARM Ltd. All rights reserved

18) Segger J-Link and SAM-ICE Trace Windows: for reference
MVision provides three basic trace windows with a ULINK2: Trace Records, Exception Trace and Event Counters.

A Segger J-Link or SAM-ICE provides a slightly different trace window. The main difference is the Trace Records window.
It is called Instruction Trace on SAM-ICE or J-Link. Exception Trace and Event Counters are the same as the ULINK2. J-
Link Ultra provides faster operation and is compatible with pVision. A J-Trace can be used but was not tested at this time.

The program must be halted in order to update information in the Instruction Trace window.
Instruction Trace: Currently displays PC Samples and Exceptions. No data read or write frames are provided.

Displayed here are PC Samples. The columns]g

contain the address, the assembly instruction Fiter: | Execuion-Al = 2l

opcode, the disassembled instruction and any i

source COde relevant' 238 (0008078C I : LCD_DAT16 =dat;

H H 235 (00080752 D3FB BCC (x0008078C

NOte the ?OUI’CE COde 1S d_ISpIayed' If yOU 240 (0008078C 2p4c STRH rd[r1 #0x02] : LCD_DAT16 =dat;

double click on a frame line, you will be taken 241 0<0008078C | 804C STRH rd 11 40x02] - LCD_DATI6 = dat;
H H H 242 (0008078C 2p4c STRH rd[r1 #0x02] : LCD_DAT16 =dat;

to-that line in the source and /or disassembly by 00080790 | 4790 P

WlndOWS. 244 (0008078C 2p4c STRH rdJr1 #002] : LCD_DAT16 =dat;
;)) 245 (0008078C 2p4c STRH rd[r1 #0x02] : LCD_DAT16 =dat;

Exception frames are part of this window but 245 (<0008078C | 804C STRH r4[F1.#0:02] - LCD_DAT16 = dat;

247 (0008078C 2p4c STRH rd[r1 #0x02] : LCD_DAT16 =dat;
y.OU r?eEd to SCfO” to them or SeIeCt the 248 (0008078C 2p4c STRH rd[r1 #0x02] : LCD_DAT16 =dat;
fllterlng box. 249 (<D00817EC | F7FFFEDA BLW rt_dispatch ((e000...

@Disassemhly | ﬂlnstruction Trace

Interleaved with the PC Samples will be the

. i Instruction Trace a x
exception frames. You can filter these outas |~ o ——r——] e = =
shown here; E—-———————Tr— -

Cpcode Instruction
H H . H 3696 v 3 | SysTick_Handler
Two exceptions are listed here: SysTick and e
SVC call. ISR Retum
i i i *3 | X Entry 11 | SVC_Handler
Note the exception entry and exit points are mo | x Retum 00 | ISR Retum
11 ” - 3702 Entry 11 | SWC_Handler
shown. “Entry” can mean either a entry or ey Ertry 1 | SVC Hander
exit point. Return 00 ISR Return is the return 37 Retum 00 | ISR Retum
. . . 3705 X Retum 00 | ISR Retum
from all exceptions. The absence of this line a7 Entry 11 | SVC_Handler
can mean tail-chaining is happening as the ol L I =il
processor goes from one exception directly to Y — e

the next without popping and pushing
everything on the stack. This saves many CPU cycles and is automatically done in Cortex-M series processors.

The “x” in the Ovf (overflow) column indicates an overload problem. Some frames may be missing or distorted. pVision is
able to recover painlessly from such overloads and indicates that such an event took place. Reduce traffic as much as possible.

. | Instruction Trace o x
The PC Samples displayed here are all the rY — 4
opcode E7FE which is a Branch to itself. fter: |Exccion A =l
This is the RTX idle daemon. Most of the : petucton
processor time is spent executing this branch 00020400 B os ide demon (3:00030400)
instruction 541 (00080400 | E7FE B os_idle_demon ((x00080400)
) 542 000080400 | E7FE B os idle_demon ((x00080400) - for ()4
Rernerﬂber7 PC Samples does not Capture 543 (x00080400 E7FE B os_idle_demon ((«00080400) s for ()4
. . 544 000080400 | E7FE B os idle_demon ((x00080400) - for ()4
every instruction: only some of them. 545 100080400 | ETFE B os_ide_demon (b000B0400)]
. 546 000080400 | E7FE B os idle_demon ((x00080400)
TIP: These windows will be improved in 7 100080400 | ETFE B os ide demon (Bx00030400)
Subsequent releases of MDK. R48 (00080400 E7FE B os_ide_demon (kx00030400)
549 000080400 | E7FE B os idle_demon ((x00080400)
550 000080400 | E7FE B os idle_demon ((x00080400)
551 000080400 | E7FE B os idle_demon ((x00080400)
552 300080400 | E7FE B os_idle_demon ((x00080400)
@Disassemhly | ﬂ Logic Analyzer | ﬂlnstruction Trace

20 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.Kkeil.com

19) Keil ULINKpro Trace Windows: for reference
ULINKQpro provides the most advanced trace windows. New features are being added as development continues.

Trace Data window: This new window displays both ETM trace frames (if selected and the processor is so equipped) and
Serial Wire Viewer (SWV) data frames. Note all SWV frames are called ITM (Instrumentation Trace Macrocell).

Frames are collected by ULINKpro either by selecting them in the Trace Configuration window as shown on page 7 or in the
case of data reads and/or writes, by adding a variable name or raw memory address to the Logic Analyzer.

Frames are displayed in the Trace Data window by selecting various filters in the Display: drop down menu shown here:

Frames are also known as Records in Keil documentation. They are the same. [T _PC Samples |

Example Trace Data windows: All (&)
A) . . ETM - Code Exec

1) Exceptions and Data Writes: Shown below results from selecting Exceptions and the four ETM - Code Exec HLL

variables phasea through phased in the RTX_Blinky example. 1TM 0 and 31 are disabled. Note the gm ?\'L Stimui

“ALL” filter is selected. ITM - Event Counters

ITK - Exceptions -
ITh - PC Samples

Frames where a “Delay” has occurred are listed in RED with a “D” in the Time column. An “O”
indicates an overflow condition. In both cases, you should be careful with the timestamps and
frames: some frames could be missing. Reducing the features selected will help reduce overflows.

In this window you can see:

1. SVCalls by the RTOS. These
events will also be displayed in the Display: Al & g in | - d
Exception Trace window. Time Address / Port Instruction / Data Sre Code / Trigger Addr | Function

D -0.0001754588 s Exception Return ;I

) . 0,000 000 000 s Exception Entry - 5VCall
Entry: when the exception enters. + 0,000 001 595 5 Exception Exit - SvCall =
EXlt When |t eXitS or retums + 0.000001 702 s Exception Return

: ' D = 0,000 004 045 s | W : 0x2000000C 0x00000001 X 00003001 A
Return: When all the exceptions D + 0.000 004 043 s Exception Entry - SVCall
have returned ThIS |S useful tO +0.000005393 5 Exception Exit - SWCall
detect ta|| chammg D = 0.000 006 619 s Exception Return LIJ
' @Disassembly | QL-:gic Analyzer | ETrace Data

2. The cyan row is where | set the
timestamp to 0. You can see the Entry to Exit of the SVCall took 1.595 psec and 1.702 psec from Entry to Return.
To set the time to zero, place the cursor on a line and right click. Select Set Time Reference.

3. At Time 4.048 pSec, is a Write to address 0x2000 0000C of data 0x1 by the instruction located at 0x0008 OD1A.
0x2000 0000C contains the data for the global variable phasea which you created in the RTX exercise.

4. The “D” shows a delay issue with the timestamp. There are no overflow frames displayed here (would be a “O”).

2) Data Writes: Data Read/Write is selected in the Display: filter box.
5. Shown below are only the data writes. Everything else has been filtered out by Display: box.

6. They show the data writes to phasea through phased with the data value, the address written to and the address of the
instruction that caused this write.

7. Note one frame has had its timestamp set to zero. You can quickly determine a data write occurs with 0.5 seconds

spacing.
If you double-click on a frame, the write
instruction will be highlighted in the : ;
source and/or assembly windows Display. MMM -Data Read/Wrte - | 38 J oL © d
Time Address / Port Instruction / Data Src Code / Trigger Addr Function
Find: Click on the Find icon E™) to open sl -
D -1.500 001 774 s| W : 0x20000018 0x00000001 X : 0x00080DEB0

a selection window to search for particular

D -0.999 999 954 5| W : 0x20000014 0x00000000 X 000080092

frames. You can select which type of D -0.500 001 643 5| W: 0x2000000C | 0x00000001 ¥: 0x00080D1A
frames to search in by Selecting the In drop D 0.000 000 000 5| W : 0x20000018 0x00000000 X: 0x000B0DCA
down menu D - 0499 995 226 5| W: 0x20000010 | 0x00000001 X 0%00080D4C

D = 0.999 999 933 s| W
D +1.499 998 226 5| W

0x2000000C 0x00000000 X 0x00080D2E
0x20000014 0x00000001 X : 0xD00B0DTE

Save: Click on the Save icon lHto save — :
- a isassem Yy g race Data
the trace frames in a CSV format. ° . lg Toce Pt

21 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

3) ITM: SW Stimuli is selected in the Display: filter box.

Shown are the data writes out ITM port 31.
. Display: ITM - SW Stimuli - B - All -
The Port: 31, data and timestamp are shown: _ i i _ _ - _ i
Time Address / Port Instruction / Data Src Code / Trigger Addr | Function
Port O is for the Debug (printf) Viewer -0.008 177 857 5| P: 31 0:0105 =
which is also known as ITM. Port 31 is to zgg: 122 i;‘ ii Eﬁ‘l’g:‘“"’—"
send RTX data to the RTX Event Viewer. s i S000IDEF
The other 30 ports are not currently used by ~0.008 160 631 5| P+ 31 00107
pVision. D -0.008 153 0125 |P: 31 0x00030E93
D -0008153012s|P:31 0x0001
There is an ITM printf exercise on the next D -0.008152 250 5|P: 31 0:02
page. You will be able to see Port 0 frames -0007 965881 5 | P 31 0:03
in this window or the Trace Records window L -2007%62321 s[F:31 004 =
|f yOU are USing a ULINK2 @Disassemhly | ﬂTrace Drata

4) PC Samples:
PC Samples are selected in the Trace Configuration window and displayed in this window:

Trace Data o x
 Display: Al 7 | E& - in Al = -
Time Address / Port Instruction / Data Src Code /[Trigger Addr | Function
- 0,000 390 095 5| X : 0x000807ED BLW wr_reg (0x00080B46) GLCD_SetWindow ;I
-0.000 195 0458 s| X : 0x00080E44 BX Ir wr_dat_only
0.000 000 000 5| X : 0xD00Z096E ADDS rdrd#1 GLCD_DrawChar
+ 0,000 195 048 5| X : 0x0008095C LSR rl,ré,rd GLCD_DrawChar
= 0,000 390 095 s| X : 0x0008096E ADDS 4 rd#El GLCD_DrawChar
=+ 0.000 585 145 s| X : 0x00080972 BCC OwDD08095C GLCD_DrawChar
= 0.000 730 190 s| X : 0x0008095C LSRR rl,rd,rd GLCD_DrawChar
+ 0,000 975 238 5| X : 0x00030964 LDR r2,[pc,#500] ; @0x00080B5C GLCD_DrawChar 1
= 0001 170 286 s| ¥ : 0x00030964 BLW wr_dat_only [0x00030B3E) GLCD_DrawChar
<+ 0.001 365 333 s| ¥ : Ox00030E43 MOV 5,0 Wr_reg
+ 0.001 560 381 s| ¥ : 0x00030970 CMP rdrb GLCD_DrawChar
+ 0001 755 429 5| X : Ox00080972 BCC OwD008095C GLCD_DrawChar
= 00017584976 5 Exception Entry - SysTick
<+ 0,001 785 405 s Exception Exit - SysTick
[

=4 Trace Data

@Disassemhly

Each timestamped frame contains the address the instruction is located, its disassembled mnemonic and the source function it
is located in. If you double-click on a frame, the write instruction will be highlighted in the source and/or assembly windows.

Note a SysTick timer event is displayed at the bottom of the window.

TIP: Filtering out trace frames with the Display: box does not reduce the load on the SWO pin. This is post filtering. To
lower the load, deselect any features you do not need in the Trace Configuration window.

4) Counters:
Counters are described under 6) Serial Wire Viewer (SWV) Configuration with ULINK2 or ULINK-ME on page 7:

Most counters are 8 bit registers and when they
roll over, an event is displayed in the Trace
Data window as shown here:

| Trace Data a3 x

* in All

gl

Display: Al hd

Time Address / Port | Instruction / Data Src Code / Trigger Addr | Function

A timestamp can be set to zero to measure the 0.06 24 5 Counter Event LSU

timing of the events. 0187 321679 5 Counter Event LSU
. . 0187333821 ¢ Counter Event LSU
These events are also displayed in the Counters TP ETIONRETEE T ST e
window where the number of rollovers is 0437 018 548 5 Counter Event L5U
displayed in real time. Each counter can be 0.459 887 295 5 Counter Event LSU <
reset to zero. @Disassemhly Q Logic Analyzer | ﬂTrace Data
22 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

20) ITM (Instruction Trace Macrocell) This example used a ULINK2.

Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done through
ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code. After the
write to the ITM port, zero CPU cycles are required to get the data out of the processor and into pVision for display in its
Debug (printf) Viewer window. Note: the global variable value from page xyz 10: 10) Watch and Memory Windows ...
must be entered and compiled in Blinky.c in order for this exercise to work.

1. Stop the program if it is running and exit Debug mode.

2. Open the project .. \Atme\NSAM3X-EK\BIlinky\Blinky.uvproj (do not use RTX_Blinky).

3. Configure the Serial Wire Viewer as described on page 13xyz. Use 84 MHz for the Core Clock. Select EXCTRC.
4

Add this code to Blinky.c. A good place is near line 27, just after the declaration of value.
#define 1TM_Port8(n) (*((volatile unsigned char *)(0xEO0000000+4*n)))

5. Inthe main function in Blinky.c right after Clock_1s=0; near line 140, enter these lines:
ITM_Port8(0) = (value >>8)+0x30; /* displays 3™ hex digit of value in ASCIl */
while (ITM_Port8(0) == 0);
ITM_Port8(0) = OxO0D;
while (ITM_Port8(0) == 0);
ITM_Port8(0) = OxO0A;

6. Rebuild the source files, program the Flash memory and enter debug mode.

7. Open Debug/Debug Settings and select the Trace tab.

8. Unselect On Data R/W Sample and PC Sample. (this is to help not overload the SWO port)

9. Select EXCTRC and ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer.

10. Click OK twice.

11. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

12. In the Debug (printf) Viewer you will see the ASCII of value appear. Debug (printf) Viewer

13. You can rotate the pot to change the values displayed.

Trace Records
1. Open the Trace Records if not already open. Double click on it to clear it.
2. You will see a window such as the one below with ITM and Exception frames. ZJBuild Output | 54 Debug [printf) Viewer
What Is This ?
1. You can see Exception 15 Entry, Exit, Return and the three ITM writes. You probably have to scroll down.

2. ITM 0 frames (Num column) are our ASCII characters from value with carriage return (0D) and line feed (0A) as
displayed the Data column.

3. All these are timestamped in both CPU cycles and time in seconds.

L x

Note: J-Link and SAM-ICE will not display ITM Type O [Nom | Addess | Dets | PC [Dy] Goks | Timew

frames. You can stop the program to see the exceptions. i 2 oo s 2e7i7es

IT™ 0 OAH 207624856 247172455

ITM Conclusion e 0 oo W7oz 27Tz

)) :) IT™ 0 DAH 207624961 247172573

The writes to ITM Stimulus Port 0 are intrusive and are m ’ F Zleusse 147172658

IT™ 0 OAH 375624859 447172455

usually one cycle. It takes no CPU cycles to get the data |1y ’ 0 Tz 7T

out the SAM3 processor and to your PC via the Serial s 0 o FucceyrroR pUALCr

Wire Output pin. e 0 oo scoon oaTiTIsi

L. . ; ™ 0 0AH 543624902 647172502

TIP: It is important to select as few options in the Trace I 0 33+ BIEUNT BATITO

)) N) ! IT™ 0 00H 543624967 647172580

IT™ 0 OAH 543624567 647172580

C(_)nflguratlon as possible to avoid overloading the SWO m ’ 0 B0 ETITINRD
pin. Enter only those features that you really need. il o 00H Tiie%es BaTITZSEZ |

Super TIP: ITM_SendChar is a useful function you can use to send characters. It is found in the header core.CM3.h.

23 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

21) DSP SINE example using ARM CMSIS-DSP Libraries:

ARM CMSIS-DSP libraries are offered for Cortex-M3 and Cortex-M4 processors. DSP libraries are provided in MDK in
C:\KeilARM\CMSIS. README.txt describes the location of various CMSIS components. See www.arm.com/cmsis and
www.onarm.com/cmsis/download/ for more information. CMSIS is an acronym for Cortex Microcontroller Software

Interface Standard. The lab for the SAM4 Cortex-M4 is located here: www.keil.com/appnotes/docs/apnt_228.asp

This example creates a sine wave with noise added, and then the noise is filtered out. The waveform in each step is displayed
in the Logic Analyzer using Serial Wire Viewer.

This example incorporates Keil RTX RTOS. RTX is available free with a BSD type license. Source code is provided.

To obtain this example file, go to www.keil.com/appnotes/docs/apnt _229.asp MDK 4.54 does not contain it.
Copy these files into C:\KeilARM\Boards\Atmel\SAM4S-EK so you have a \DSP directory.

1. Open the project file sine: C:\KeilNARM\Boards\Atmel\SAM3X-EK\DSP\sine.uvproj
2. Build the files. 2l There will be no errors or warnings
LoAD
3. Program the SAM3X flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.
4. Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.
5. Click on the RUN icon. Open the Logic Analyzer window.
6. Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust the
Grid for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.
7. The project provided has Serial Wire Viewer configured and the Logic Analyzer loaded with the four variables.
WE Min Time Mazx Time: Zoom Code Trace Setup Min/Mazx Llpdale Screen | Transition ™ Signal Info | Ampltude
Save .|| 0849235 [8271739s [D02s E-- m m Ao |[Undo || [Step | -- I‘ Show Cydes I Cursor
I 1 H |
|
|
|
|
|
z |
E |
E |
- |
2 |
-32768 : : : : : : : : : : : : : : : : : [
- 79.20739s ' ' ' ' ' ' | oelpo7a8s ; ' ' ; ' : ' 3i3 I
@D\sassemhly | ﬂLngi(Analyzer
8. Open the Trace Records window and the
Data Writes to the four variables are X
|isted as Shown here: Type Ovf | Num Address | Data | PC [o | Cycles | Timels] ﬂ
Data Write 20000000H 2C20H 00400252H 9741265867 101.471515945
H Data Wit 20000002H FO81H 00400280H X 9741274850 101.47161302
9' LeaVe the program runnlng' Dat: ‘.Vm: X 20000006H F326H 004002CEH X 9741274850 101.47161302
. Data Write 20000000H 2EF4H 00400252H 9741745582 101.47651648
10. Close the Trace Records window. Data Wite 20000002H F5CEH 00400280H X 9741754550 10147660390
Data Write X 20000006H FEFFH D04002CEH X 9741754550 101.47660350
- H H H Data Wi 20000000H 318CH 00400252H 9742225305 101.48151359
TI P The ULI NKpI’O dlsplay WI” be dlfferent and D:tt: ‘.’\c':tt: 20000002H FC15H 00400280H X 9742234332 101.48160762
1 1 Data Wri X 20000006H FAEZH D04002CEH X 9747234332 101.48160762
the program mUSt be StOpPEd to update It J_Llnk D:tt: ‘.‘\c':tt: 20000000H 13FTH 00400252H 9742705028 101.48651071
- Data Writ 20000002H 02C0H 00400220H X 9747714032 101.48660450
or SAM ICE WI" nOt dlsplay the data ertes' Dat: ‘.‘\c'rit: X 20000006H FECEH D04002CEH X 9747714032 101.48660450
- - - Data Wri 20000000H 362TH 00400252H 9743184839 101.49150874
The Watch 1 window will display the four Dot Wt 20000002H 0927H 0D400280H X 9743193814 101.49160223
H H H H . Data Whit X 20000006H 02B7H D04002CEH X 5743153814 101.45160223
variables updating in real time as shown below: Data Wite 20000000H 381AH 00400252H 9743664482 10149650502
Data Write 20000002H DEASH 00400280H X 9743673432 101.45659825
Data Write X 20000006H 06A2H 004002CEH X 5743673432 101.45659825
Data Write 20000000H 35DAH 00400252H 5744144157 101.50150205
Data Write 20000002H 12BAH 00400280H X 5744153214 101.50159558 LI
¥ noise
o o disturbed
o @ filtered
i <Enter expressions
24 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

http://www.arm.com/cmsis�
http://www.onarm.com/cmsis/download/�
http://www.keil.com/appnotes/docs/apnt_229.asp�

Signal Timings in Logic Analyzer (LA):
1. Inthe LA window, select Signal Info, Show Cycles, Amplitude and Cursor.

2. Click on STOP in the Update Screen box. You could also stop the program but leave it running in this case.
3. Click somewhere in the LA to set a reference cursor line.
4. Note as you move the cursor various timing information is displayed as shown below:

ISeiup I Load ... Min Time Max Time Grid Zoom Code Trace Setup Min/Max Update Screen| Transition ¥ Sigral Infa ¥ Ampltude
Save .. | |Show ||Show || Auto || Undo | | Start |

Os 19.55015 5 | 05s

[Show Cycles W Cursor

sine

noisa

disturbed

disturbed
E Mouse Pos Reference Point Delta 1
£ Time: 14.25515 5 1273011 s 1.525042 s = 065572 Hz /\/
= Value: -21260 19509 -40769]
PC 5 M/A P& ! !
11.94515 s 1273011 s 14756158, d. 1.026047 5] 10949198 13.94515 s
_| 1146734372 122130333 1368494372, d: 146404039]530734372 1914?343?2I |
A L3

@Disassembl}-‘

Q Logic Analyzer

RTX Tasks and System:
5. Click on Start to resume the collection of data.
Open Debug/OS Support and select RTX Tasks and System. A window similar to below opens up.

Note this window does not update: nearly all the processor time is spent in the idle daemon. The processor spends
relatively little time in each task. You will see this illustrated clearly on the next page.

Set a breakpoint in one of the tasks in DirtyFilter.c by clicking in the left margin on a grey area.

The program will stop here and the Task window will be updated accordingly. Here, I set a breakpoint in the
noise_gen task:

10. Clearly you can see that noise_gen was running when the breakpoint was activated.
11. Remove the breakpoint.

TIP: Recall this window uses the CoreSight -

DAP read and write technology to update this e —

window. Serial Wire Viewer is not used and is Timer Number. 0

not required to be activated for this window to L 10.000 msze

display and be updated. Stack Size: 20
Tasks with User-provided Stack: 0

The Event Viewer does use SWV and this is stack Overflow Check: Yes
Task Usage: Available: 7, Used: 5

demonstrated on the next page. UserTimers: Avellables, Used: 0

E;:Tasks D HName Priarity State Delay Event Value Event Mask Stack Load
255 |os_idle_demon 0
[sync_tsk 1 ‘Wait_DLY 1 32%
5 filter_tsk 1 ‘Wait_AND 0x0000 00001 32%
4 disturb_gen 1 ‘Wait_AND 0x0000 00001 32%
3 noise_gen 1 0x0000 00001
2 sine_gen 1 Wait_AND 00000 0:0001 32%
25 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

Event Viewer:
1. Select Debug/Debug Settings and select the Trace tab. Select ITM Port 31. Click on OK twice.
2. Click on RUN.
3. Open Debug/OS Support and select Event Viewer. The window below opens up:
4. Note there is no Task 1

. . . Load... Min Time Max Time Grid Zoom Code | Trace Update Screen | Transition I Cursor i
IISted TaSk lis maln—tSk Save... |0-9701535 | 55.50008 s | 10ms | In IlOuii All I Show I Show | Stop Claarl Prevl Nextl [~ Show Cycles

and is found in DirtyFilter.c
near line 168. It runs some Al Tasks [255) XQB&} Km} Xm Krzas} Xm 255) Xass} }(@55} X@s&} }(@55} Xm} >
RTX initialization code at : : : ! ‘ : 1 : !

-

EEn

e

[[[|

the beginning and then ' '
deletes itself with

0s_tsk_delete_self(); found TR
near line 186.

TIP: If If the window is blank, exit ==
and re-enter debug mode to refresh

sine_gen (2)

N fiter_tsk (5} :
the screens. Click on RUN. | j j j j j j
TIP: If Event Viewer is still blank ~ amessk® { I
or erratic, or the LA variables are not - : : : ‘ : 1 : :
displaying or blank: this is likely [_
because the Serial Wire Output pinis B5468s ' ' ' | B53s ‘ ' ‘ ' | E555s
overloaded and dropping trace = ol
frames.

Solutions are to delete some or all of the variables in the Logic Analyzer to free up some bandwidth.

ULINKpro, J-Link and SAM-ICE are much better with SWO bandwidth issues. These have been able to display both the
Event and LA windows. ULINKpro uses the faster Manchester format than the slower UART mode that ULINK2 uses.

5. Note on the Y axis each of the 5 running tasks plus the idle daemon. Each bar is an active task and shows you what
task is running, when and for how long.

Click Stop in the Update Screen box.
Click on Zoom In so three or four tasks are displayed.
Select Cursor. Position the cursor over one set of bars and click once. A red line is set here:

© ® N o

Move your cursor to the right over the next set and total time and difference are displayed.
10. Note, since you enabled Show Cycles, the total cycles and difference is also shown.

The 10 msec shown is the SysTick timer value. This value is set in RTX_Conf_CM.c. The next page describes how to
change this.

Load... Min Time Max Time Grid | Zoom Code Trace Update Screen | Transition ¥ Cursor ™ TaskInfo
TIP: ITM Port 31enables sending the Event sov.,|presssmsfznoone [2ne |mlioal] oo | s |] cem) e et srowcyes
Viewer frames out the SWO port. Disabling ... | e (VI
this can save bandwidth on the SWO portifyou = ; ; ; 1 1 ; : | | : : :

are not using the Event Viewer.

@ ... sine_ge.

c ts.. filter tsk ... disturb... nois:

ldle[2... syn

2456468 s 7457017 s 37868 [24.5802 5, d: 10.03146 ms
_|239660901T 2357135917 3 2358098537, d: 563020
4

26 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

Event Viewer Timing:
1. Click on Zoom In until one set of tasks is visible as shown below:
2. Enable Task Info (as well as Cursor and Show Cycles from the previous exercise).

3. Note one entire sequence is shown. This screen is taken with ULINKpro. Other adapters such as SAM-ICE and
ULINK2 might have different values since ULINKpro has the best ability to collect SWV frames without overloads.

4. Click on a task to set the cursor and move it to the end. The time difference is noted. The Task Info box will appear.
TIP: If the Event Viewer displays no tasks, exit and re-enter debug mode.
The Event Viewer can give you a good idea if your RTOS is configured correctly and running in the right sequence.

Load... Min Time Max Time Grid Zoom Code | Trace Update Screen | Transition o ¥ Task Info

Save... |0-347375 |T|5| 5.780113s | 10u [1n ||Out| All | Show | Show | Start I Clearl reul Mext | ¢ Shaw Cydes

=2 1 :

z :

= Idle (255): i 1 (3) i Idle {255}

= : H !

i géinoise_gen (3)]] :
sine_ge. : '
noise_qg sine_gen (2): Min Max Average Called
. [0:00400235) 2927083 us 7604167 us 7.583333 us 579

. H H Time: Mouse Pos Reference Point Delta

disturb ... H H 5.670099 s 5.670091 s 7.40625 us = 135021.097047 Hz

fiter tsk.. : : : -

sync_ts... E . E

Idle (2...

5670073 s 5.670095.670099 s, d: 7.40625u 56701435 56702135

|544326981 544378[544375477, d: 711 544333701 5443.1Jm21|
d 3

SysTick Timer Changing:

Stop the processor Q and exit debug mode. @

Open the file RTX_Conf_CM.c from the Project window. You can also select File/Open in
C:\KeilARM\Boards\AtmeI\SAM3X-EK\DSP\src.

3. Select the Configuration Wizard tab at the bottom of the window. sraimun savesxs e
See page 14 for an explanation on how the Wizard works. Bpand Al | Colepse Al | Hlp | T ShowGnd
This window opens up. Expand SysTick Timer Configuration. Sption | value

[#-Task Configuration
: SysTick Timer Configuration

i-Timer clock value Hz] 54000000
-Timer tick value [us] 10000
[#-System Configuration

Note the Timer tick value is 10,000 usec or 10 msec.
Change this to 20,000.
TIP: The 84,000,000 is the CPU clock speed.
7. Rebuild the source files and program the Flash.

8. Enter debug mode @ and click on RUN .

9. When you check the timing of the tasks in the Event Viewer window as you did on the previous page, they will now
be spaced at 20 msec.

TIP: The SysTick is a dedicated timer on Cortex-M processors that is used to switch tasks in an RTOS. It does this by
generating an exception 15. You can view these exceptions in the Trace Records window by enabling EXCTRC in the Trace
Configuration window.

1. Setthe SysTick timer back to 10,000. You will need to recompile the source files and reprogram the Flash.

This ends the exercises. Thank you.

27 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

22) Creating a new project: Using the Blinky source files:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point
for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.
We will use the existing source code files so you will not have to type them in. Once you have the new project configured;
you can build, load and run a bare Blinky example. It has an empty main() function so it does not do much. However, the
processor startup sequences are present and you can easily add your own source code and/or files. You can use this process to
create any new project, including one using an RTOS.

Create a new project called Mytest:

1. With pVision running and not in debug mode, select Project/New pVision Project...
2. Inthe window Create New Project that opens, go to the folder C:\KeilARM\Boards\Atme\SAM3X-EK.
Create a new folder and name your project:
3. Right click inside this window and create a new folder by selecting New/Folder. | named this new folder FAE.
4. Double-click on the newly created folder “FAE” to enter this folder. It will be empty.
5. Name your project in the File name: box. | called mine Mytest. You can choose your own name but you will have to

keep track of it. This window is shown here:) 2l
6. Click on Save. Savein: |) FaE X emeE
Select your processor: B

7. “Select a CPU Data Base File” shown below opens up. E
8. Click on OK and the Select Device for “Target 1” opens os
up as shown below.

9. This is the Keil Device Database® which lists all the ?
devices Keil supports. You can create your own if
desired for processors not released yet.

10. Locate the Atmel directory, open it and select
SAM3X8H (or the device you are using). Note the
device features are displayed.

11. Select OK.

o

My Docurments

pVision will configure itself to this device. - [pastest = save |
Select the startup file: Savesstpe |Project Fies [urvpre] = Cancel |

w

12. A window opens up asking if you want to insert the
default SAM3X startup file to your project. Click on “Yes”. This will save you some time.
13. In the Project Workspace in the upper left hand of pVision, open up the folders Target 1 and Source Group 1 by

clicking on the “+” beside each folder.
14. We have now created a project called Mytest with the target hardware called

Target 1 with one source assembly file startup_SAM3X.s and using the |Generc CPU Data Base =
SAM3X8H processor. ok | cance |
TIP: You can create more target hardware configurations and easily select them. This
can include multiple Options settings, simulation and x|
RAM operations. See Projects/Manage/Components crU |
. .) Vendor: Atmel
Rename th_e Project names for convenience: e
15. Click once on the name “Target 1” (or Tookset: ARM
twic_e if not already highlighted) in the SO Desapton:
Project Workspace and rename Target 1 to T SAaNG 2| o _ =
something else. | chose SAM3X Flash. B e ey Pesocion Ui (P 1 5 2 4R
Press Enter to accept this change. Note the €1 SAV3SEC e
Target selector in the main pVision window jjjjg e - Nested Vector ntemupt Controlier
Hemon
al_so_changes to SAM3X Flash. Ig s 'Er”‘n’:”nzsﬁg“ﬁﬂﬂ.z e ebedied P, 2508w soces, manory
= b witl
16 Slmllarly’ Change Source Group 1 to ~£d SAMIXEC -1?nlgbﬂe:H0Ml?:ﬂy}t18:mTedded bootloader{UﬁuHaT. Egﬁs}. IAP routines
Startup. This will add some consistency to ~E3 SAMSXEE | |-t Memony Controle SWC) SRAM. NOR. NAND suppor
. . i il m - SDRAM Controller
your project with the Keil examples. You €1 SAVISTEA o
can name these or organize them differently "'"g §iﬂi§1§5 - Embeddd voltags reguistor for singls suppy cperation _lj
to suit yourself. oo =lf L ' 2
17. Select File/Save All.
[ok][canca | Help
28 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

Select the source files and debug adapter:

1. Using MS Explore (right click on Windows Start icon), copy blinky.c and system_SAM3X.c from
C:\KeilARM\Boards\Atmel\SAM3X-EK\BIinky to the .\SAM3X-EK\FAE folder you created.
Source Files:
2. Inthe Project Workspace in the upper left hand of pVision, right-click on “SAM3X Flash” and select “Add Group”.
Name this new group “Source Files” and press Enter. You can name it anything. There are no restrictions from Keil.
3. Right-click on “Source Files” and select Add files to Group “Source Files”.
4. Select the file Blinky.c and click on Add (once!) and then Close.

System File: |Project 7 x|
5. Right-click on “Startup” and select Add files to Group “Source Files”. E--ia SAM3¥ Flash
6. Select the file system_SAM3X.c and click on Add (once!) and then Close. =-E3 Startup

7. Your Project window will look similar to the one shown here: %] startup_SAM3X.s

Select your Debug Adapter:
8. By default the simulator is selected when you create a new pVision project.
You probably need to change this to a USB adapter such as a ULINK2.

9. Select Options for Target &N or ALT-F7 and select the Debug tab. Select
ULINK/ME Cortex Debugger as shown below: If you are using another
adapter such as SAM-ICE, J-Link or ULINKpro, select the appropriate
adapter from the pull-down list.

10. Select JTAG/SWD debugging (as opposed to selecting the Simulator) by checking the circle just to the left of the
word “Use:” as shown in the window to the right:

11. Select the Utilities tab and select the appropriate debug adapter and

¥] system_SAM3¥.c
=5 Source Files

the proper Flash algorithm for your processor. Refer to Using S X
Various USB adapters: starting on page 4 for more information. | Liker Debug | Uities |

12. Click on the Target tab and select MicroLIB for smaller programs.
See www.keil.com/appnotes/files/apnt202.pdf for details. & Uss: [ULINK2/ME Coriex Debugger || _Seftings |

Modify Blinky.c

13. Double-click the file Blinky.c in the Project window to open it in
the editing window or click on its tab if it is already open.

14. Delete everything in Blinky.c except the main () function to provide a basic platform to start with:

#include <stdio.h>

#include ""SAM3X.h" /* SAM3X definitions */
/)

Main Program

K */
int main (void) {

while (1) { /* Loop forever */

}

}

15. Select File/Save All
Compile and run the program:

16. Compile the source files by clicking on the Rebuild icon. =l you can also use the Build icon beside it.
LOAD

17. Program the SAM3X flash by clicking on the Load icon: ¥+ Progress will be indicated in the Output Window.

18. Enter Debug mode by clicking on the Debug icon.@

19. Click on the RUN icon. Note: you stop the program with the STOP icon. D]

20. The program will run but since while(1) is empty — it does not do much. You can set a breakpoint.
21. You should be able to add your own source code to create a meaningful project.

This completes the exercise of creating your own project from scratch.
You can also configure a new RTX project from scratch using RTX_Blinky project.

29 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

http://www.keil.com/appnotes/files/apnt202.pdf�

23) Serial Wire Viewer Summary:

Serial Wire Viewer can see:

Global variables.

Static variables.

Structures.

Peripheral registers — just read or write to them.

Can’t see local variables. (just make them global or static).

Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

PC Samples.

Data reads and writes.
Exception and interrupt events.
CPU counters.

Timestamps for these.

Trace is good for:

Trace adds significant power to debugging efforts. Tells where the program has been.
A recorded history of the program execution in the order it happened.

Trace can often find nasty problems very quickly.

Weeks or months can be replaced by minutes.

Especially where the bug occurs a long time before the consequences are seen.

Or where the state of the system disappears with a change in scope(s).

Plus - don’t have to stop the program. Crucial to some projects.

These are the types of problems that can be found with a quality trace:

24)

Pointer problems.
Illegal instructions and data aborts (such as misaligned writes).

Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did I get here ?

Out of bounds data. Uninitialized variables and arrays.
Stack overflows. What causes the stack to grow bigger than it should ?

Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

Communication protocol and timing issues. System timing problems.

Useful Documents:

The Definitive Guide to the ARM Cortex-M3 by Joseph Yiu. (he also has one for the Cortex-MQ) Search the web.
MDK-ARM Compiler Optimizations: Appnote 202: www.keil.com/appnotes/files/apnt202.pdf

A list of resources is located at: http://www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

www.arm.com/cmsis

30 Copyright © 2012 ARM Ltd. All rights reserved

Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.keil.com

http://www.keil.com/appnotes/files/apnt202.pdf�
http://www.arm.com/products/processors/cortex-m/index.php�
http://www.arm.com/�

25) Keil Products:
Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite (Evaluation version) $0
= MDK-Basic (256K Compiler Limit, No debug Limit) - $2,695
= MDK-Standard (unlimited compile and debug code and data size) - $4,895
= MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,995
Note: All versions of MDK now include RTX RTOS with source code.

USB-JTAG adapter (for Flash programming too) /
= ULINK2 - $395 (ULINK2 and ME - SWV only — no ETM) '

. . ' [F]KEIL
= ULINK-ME — sold only with a board by Keil or OEM. | I>§]KE“._ Bl ion
= ULINKpro - $1,395 — Cortex-Mx SWV & ETM trace. l|I S v Sianed =

MDK also supports SAM-ICE and Segger J- | oo 0
Link Debug adapters. — .
» For special promotional pricing and offers, please [= : I "

contact Keil Sales.

The Keil RTX RTOS is now provided under a Berkeley BSD type license.
This makes it free.

All versions, including MDK-Lite, includes Keil RTX RTOS with source code
Keil provides free DSP libraries for the Cortex-M3 and Cortex-M4.

Call Keil Sales for details on current pricing, specials and quantity discounts. Sales can also provide advice about the various
tools options available to you. They will help you find various labs and appnotes that are useful.

All products are available from stock.
All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com and search for university to view various programs and
resources.

Keil supports many other Atmel processors including 8051, ARM7™ and ARM9™ processors. See the Keil Device
Database® on www.keil.com/dd for the complete list of Atmel support. This information is also included in MDK.

MDK supports Atmel SAM3, SAM4, SAM7 and SAM9 processors. Check www.keil.com/dd for the complete list.
Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

Prices are for reference only and are subject to change without notice.

For the entire Keil catalog see www.keil.com or contact Keil or your local distributor.

For Linux, Android and bare metal (no OS) support on Atmel SAM9 processors, please see DS-5 www.arm.com/ds5.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.
For the latest version of this document, contact the author, Keil Technical support or www.keil.com.

(VM55 cortex | |KEIL

Software Interface Standard . TO o I s by A R M

Intelligent Processors by ARM®

31 Copyright © 2012 ARM Ltd. All rights reserved
Atmel ATSAM3X Lab with ARM® Keil™ MDK toolkit www.Kkeil.com

http://www.arm.com/�
http://www.keil.com/dd�
http://www.keil.com/dd�
mailto:sales.intl@keil.com�
http://www.keil.com/�
http://www.arm.com/ds5�
mailto:sales.us@keil.com�
mailto:sales.intl@keil.com�
mailto:support.us@keil.com�
mailto:support.intl@keil.com�

	Introduction: For the latest version of this document: www.keil.com/appnotes/docs/apnt_229.asp
	Why Use Keil MDK ?
	Serial Wire Viewer (SWV):
	Index:
	1. Atmel Evaluation Boards & Keil Evaluation Software: 3
	2. Software Installation: 3
	3. CoreSight Definitions: 3
	4. CMSIS: Cortex Microcontroller Software Interface Standard 3
	5. Using Various USB adapters: J-Link, SAM-ICE, Keil ULINK: 4
	1) Configuring a Segger J-Link and SAM-ICE: 4
	2) Configuring a Keil ULINK2 or ULINK-ME: 5
	3) Configuring a Keil ULINKpro: 6
	6. Serial Wire Viewer (SWV) Configuration: 7
	7. Blinky example using the Atmel SAM3X-EK: 8
	8. Hardware Breakpoints: 8
	9. Call Stack & Locals window: 9
	10. Watch and Memory windows and how to use them: 10
	11. How to view Local Variables in Watch and Memory windows: 11
	14. RTX_Blinky: Keil RTX RTOS example: 14
	15. RTX Kernel Awareness using RTX Viewer: 15
	16. Logic Analyzer: View variables real-time in a graphical format: 16
	17. Serial Wire Viewer (SWV) and how to use it: 17
	1) Data Reads and Writes 17
	2) Exceptions and Interrupts 18
	3) PC Samples (program counter samples) 19
	18. Segger J-Link and SAM-ICE Trace Windows: 20
	19. Keil ULINKpro Trace Windows: 21
	20. ITM (Instruction Trace Macrocell): 23
	21. DSP SINE example using ARM CMSIS-DSP Libraries: 24
	22. Creating your own project from scratch: 28
	23. Serial Wire Viewer summary: 30
	24. Useful Documents: 30
	25. Keil Products and contact information: 31
	Using this document:
	1) Atmel Evaluation Boards & Keil Evaluation Software:
	Keil currently provides board support for four SAM3 (Cortex-M3) and one SAM4 (Cortex-M4) boards as listed here:
	2) Software Installation:
	3) CoreSight Definitions: It is useful to have a basic understanding of these terms:
	4) CMSIS: Cortex Microcontroller Software Interface Standard
	5) Using Various USB adapters: J-Link, SAM-ICE, Keil ULINK series:
	1) Configuring a Segger J-Link and SAM-ICE: (the Atmel SAM-ICE is pictured on page 6)
	3) Configuring a Keil ULINKpro: This is configured the same way as a ULINK2 except for the two selection entries. One is in the Debug tab (shown below) and the other in the Utilities tab.
	TIP: A ULINKpro can be used to debug an ARM7 or an ARM9 but ETM trace will not be visible. ARM7 or ARM9 processors normally do not have SWV. Contact Keil technical support for SAM9 ETM trace support information.
	TIP: µVision windows can be floated anywhere. You can restore them by setting Window/Reset Views to default. µVision supports two display screens.
	Keil ULINKpro
	Segger SAM-ICE
	6) Serial Wire Viewer (SWV) Configuration:
	TIP: If you have any lockup problems with a ULINK2 or ULINK-ME when using SWV, and these problems disappear when SWV (Trace) is not enabled, your laptop might have some USB port speed issues. Desktop computers are not affected. You can add an exter...
	7) Blinky example program using the Atmel SAM3X-EK and ULINK2:
	The LEDs on the SAM3X-EK will now blink.
	1. Rotating the potentiometer VR1 will change the speed the LEDs blink. The pot is connected to an A/D convertor.
	2. The A/D value will also be displayed on the LCD as shown below: This is the local variable ad_val in main().
	Now you know how to compile a program, program it into the ATSAM3X processor Flash, run it and stop it !
	This program will now run stand-alone on the SAM3X-EK if you remove the debug adapter and RESET the board. Blinky is permanently programmed in the device flash memory.
	8) Hardware Breakpoints:
	The SAM3X has six hardware breakpoints that can be set or unset on the fly while the program is running.
	9) Call Stack + Locals Window:
	10) Watch and Memory Windows and how to use them:
	TIP: To view variables and where they are located use the Symbol window. Select View/Symbol Window while in Debug mode.
	11) How to view Local Variables in the Watch or Memory windows:
	12) View Variables Graphically with the Logic Analyzer (LA):
	13) Watchpoints: Conditional Breakpoints
	14) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example
	The Configuration Wizard for RTX:
	15) RTX Kernel Awareness using RTX Viewer
	RTX Viewer: Configuring Serial Wire Viewer (SWV):
	16) Logic Analyzer Window: View variables real-time in a graphical format:
	Enter the Variables into the Logic Analyzer:
	17) Serial Wire Viewer (SWV) and how to use it:
	2) Exceptions and Interrupts:
	3) PC Samples:
	18) Segger J-Link and SAM-ICE Trace Windows: for reference
	19) Keil ULINKpro Trace Windows: for reference
	20) ITM (Instruction Trace Macrocell) This example used a ULINK2.
	Trace Records
	What Is This ?
	Note: J-Link and SAM-ICE will not display ITM frames. You can stop the program to see the exceptions.
	ITM Conclusion
	21) DSP SINE example using ARM CMSIS-DSP Libraries:
	Signal Timings in Logic Analyzer (LA):
	RTX Tasks and System:
	Event Viewer:
	22) Creating a new project: Using the Blinky source files:
	Create a new project called Mytest:
	Select the source files and debug adapter:
	This completes the exercise of creating your own project from scratch.
	You can also configure a new RTX project from scratch using RTX_Blinky project.
	23) Serial Wire Viewer Summary:
	Serial Wire Viewer can see:
	Serial Wire Viewer displays in various ways:
	Trace is good for:
	These are the types of problems that can be found with a quality trace:
	24) Useful Documents:
	25) Keil Products:
	Keil Microcontroller Development Kit (MDK-ARM™)
	Note: All versions of MDK now include RTX RTOS with source code.
	USB-JTAG adapter (for Flash programming too)
	 ULINK2 - $395 (ULINK2 and ME - SWV only – no ETM)
	 ULINK-ME – sold only with a board by Keil or OEM.
	 ULINKpro - $1,395 – Cortex-Mx SWV & ETM trace. MDK also supports SAM-ICE and Segger J-Link Debug adapters.
	The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free.
	All versions, including MDK-Lite, includes Keil RTX RTOS with source code !
	Keil provides free DSP libraries for the Cortex-M3 and Cortex-M4.
	Call Keil Sales for details on current pricing, specials and quantity discounts. Sales can also provide advice about the various tools options available to you. They will help you find various labs and appnotes that are useful.
	All products are available from stock.
	All products include Technical Support for 1 year. This is easily renewed.
	Call Keil Sales for special university pricing. Go to Uwww.arm.comU and search for university to view various programs and resources.
	Keil supports many other Atmel processors including 8051, ARM7™ and ARM9™ processors. See the Keil Device Database® on Uwww.keil.com/ddU for the complete list of Atmel support. This information is also included in MDK.
	For more information:

