
LSM303C 6DoF Hookup Guide




Introduction
The LSM303C is a 6 degrees of freedom (6DOF) inertial measurement unit
(IMU) in a sigle package. It houses a 3-axis accelerometer, and a 3-axis
magnetometer. The range of each sensor is configurable: the
accelerometer’s scale can be set to ±2g, ±4g, ±6g, or ±8g, and the
magnetometer has full-scale range of ±16 gauss.

LSM303C Breakout Board

The LSM303C supports I C and SPI. This tutorial focuses on using this
device in I C mode, but will briefly describe how to use SPI.

Covered In This Tutorial

First we’ll introduce you to the breakout board. Then we’ll switch over to
example code and show you how to interface with the board using an
Arduino and our SparkFun LSM303C 6 DOF IMU Breakout Arduino Library.

The tutorial is split into the following sections:

• Breakout Board Overview – This page examines the LSM303C
Breakout Board – topics like the pinout, jumpers, and schematic are
covered.

• Hardware Assembly – How to assemble the hardware to run some
example code.

• Installing the Arduino Library – How to install the Arduino library, and
use a simple example sketch to verify that your hookup works.

• Resources & Going Further – Resources for learning and doing more
with the LSM303C.

Required Materials

This tutorial explains how to use the LSM303C Breakout Board with an

2

2

Page 1 of 12

SparkFun LSM303C Hookup Guide SparkFun Wish List

Arduino. To follow along, you’ll need the following materials:

SparkFun 6 Degrees of Freedom Breakout - LSM303C
BOB-13303

The LSM303C is a 6 Degrees of Freedom (6DOF) inertial measurem…

Jumper Wires Standard 7" M/M Pack of 30
PRT-11026

If you need to knock up a quick prototype there's nothing like having a …

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power …

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

Arduino Pro Mini 328 - 3.3V/8MHz
DEV-11114

It's blue! It's thin! It's the Arduino Pro Mini! SparkFun's minimal design …

The LSM303C is a 2.5V device! Supplying voltages greater than 4.8V
can permanently damage the IC. InvenSense recommends running
from 1.9V to 3.6V. As long as your Arduino has a 3.3V supply output,
you shouldn't need any extra level shifting. See our [logic level tutorial]
(tutorials/62) for more info if you aren't using a 3.3V system.

Suggested Reading

If you’re not familiar with some of the concepts below, we recommend
checking out that tutorial before continuing on.

• Pull-up Resistors
• Accelerometer Basics
• Inter-Integrated Circuit Communication (I C)

Hardware Overview

The Pinout

The LSM303C 6 DOF Breakout has 10 plated through hole connections.

Top View of LSM303C Breakout Board

The following table summarizes all of the plated through hole connections

2

Page 2 of 12

on the breakout board:

Pin Label Pin Function Notes

GND Ground reference +0V

VDD_IO Power supply for
I/O pins

1.71V up to VDD + 0.1V

SDA/
SDI/
SDO

I C serial data
SPI serial data
input
3-wire interface
serial data output

ST calls the second serial interface
SPI, but it's really a half-duplex
variant that uses the same pin for
MISO and for MOSI. Note that all 3
data signals are the same pin.

SCL/
SCLK

I C serial clock
SPI serial port clock

100 or 400 kHz I C
Up to 10 MHz SPI

INT_XL Accelerometer
interrupt signal

The functions, the threshold and the
timing of this interrupt are
configurable.

DRDY Data ready Configurable output to indicate when
accelerometer or magnetometer data
is ready.

CS_XL Accelerometer: SPI
enable
I C/SPI mode
selection

1: SPI idle mode / I2C communication
enabled;
0: SPI communication mode / I C
disabled

VDD Power supply 1.9V to 3.6V

CS_MAG Magnetometer: SPI
enable
I C/SPI mode
selection

1: SPI idle mode / I2C communication
enabled;
0: SPI communication mode / I2C
disabled

INT_MAG Magnetometer
interrupt signal

The functions, the threshold and the
timing of this interrupt are
configurable.

Power Supply

The LSM303C breakout has three power supply plated thru-hole
connections: a 0V reference (GND), a core supply (VDD), and an IO supply
(VDD_IO). The core of the IC can be powered from 1.9-3.6V. The IO must
be given a potential of at least 1.71V up to the core supply voltage plus
0.1V. This dual supply setup eliminates the need for external voltage level
translation. A 3.3V rail can power most of the device while still being able to
communicate with a 1.8V processor without drawing all of its power from
that lower voltage rail.

Communication

The LSM303C communicates over I C or ‘SPI’ using the same plated thru-
hole connections. The implementation of ‘SPI’ on the LSM303C isn’t
standard; it’s a half-duplex variant. Standard SPI has a MOSI and a MISO
signal. Both of these are found on the single SDA/SDI/SDO connection.
The more common Arduino variants don’t have hardware that directly
supports this, so we are bit banging in our library. Your system may be
compatible, so we didn’t add external components to get the hardware to

2

2 2

2 2

2

2

Page 3 of 12

work with the Atmel SPI hardware. This connection is also used as the SDA
connection for I C. Testing showed that the implementation of this IO acts
like an open-drain like is common with I C. This means that a pull-up
resistor is needed for both SPI and I C. The breakout includes this pull-up.
Both communication modes share the same clock line (SCL/SCLK).

The LSM303C is implemented as two separate cores on the same die. The
accelerometer and magnetometer have their own chip select lines. In I C
mode, they have their own unique addresses. The accelerometer is at
0x1D, and the magnetometer is at 0x1E.

Interrupts

There are a variety of interrupts on the LSM303C. The system can be
configured to generate an interrupt signal for free-fall, motion detection and
magnetic field detection. The actual function of the two interrupt pins
(INT_XL & INT_MAG) are highly configurable through either the I C or SPI
interfaces. They can be active high or low, latching or non-latching, etc.
This advanced topic won’t be covered in this hookup guide. Please
reference the datasheet for more information.

The Jumper

In many cases, especially Arduino related, you won’t have multiple lower
voltage rails. For these cases we’ve included SJ2. Your board comes with
this jumper closed with a trace by default. This connects VDD_IO and VDD.

Closeup of voltage jumper

The intention of this jumper is to allow the end user to power use the board
and begin developing right out of the box. To disable any of these jumpers,
whip out your handy hobby knife, and carefully cut the small traces between
the two pads. You may then connect VDD_IO to whatever power rial you
desire.

Hardware Assembly

I C Example

The basic use case for the LSM303C requires 4 connections to the
µController or µProcessor; power, ground, I C clock and data. The following
images shows how we used a SparkFun FTDI Basic Breakout, and an 3.3V
Arduino Pro Mini to power and interface to a LSM303C 6 DOF Breakout
board.

2

2

2

2

2

2

2

Page 4 of 12

An LSM303C wired up to and Arduino Pro Mini for the MinimalistExample
(IIC)

Make connections to the breakout anyway that makes you happy. The
board in the above photo has a straight header soldered to it. We could
have used a right angle header, or wire, etc. Please note that different
mounting orientations will alter the orientation of the axes. Make sure
your code matches the physical orientation for your projects.

For this demo, we made the following connections:

Arduino Pro Mini LSM303C Breakout Notes

VCC VDD +3.3V

GND GND +0V

SDA SDA/SDI/SDO Serial data @ +3.3V CMOS
logic

SCL SCL/SCLK Serial clock @ +3.3V CMOS
logic

The whole system in our testing was powered via USB through the FTDI
basic.

Electrical connections for demo

SPI Example

Page 5 of 12

Four hardware changes need to be made to interface the sensor using SPI.
Move the SDA/SDI/SDO connection from SDA on the Arduino Pro Mini to
digital pin 10, move the SCK/SCLK connection from SCL on the Arduino
Pro Mini to digital pin 11, and add the two chip select lines.

Arduino Pro Mini LSM303C Breakout Notes

VCC VDD +3.3V

GND GND +0V

Digital 10 SDA/SDI/SDO Serial data @ +3.3V CMOS
logic

Digital 11 SCL/SCLK Serial clock @ +3.3V CMOS
logic

Digital 12 CS_XL Accelerometer chip select @
+3.3V CMOS logic

Digital 13 CS_MAG Magnetometer chip select @
+3.3V CMOS logic

Example of a Pro Mini wired up for SPI

Connecting for SPI interface

Installing the Arduino Library

Page 6 of 12




 

Download and Install the Library

Visit the GitHub repository to download the most recent version of the
libraries, or click the link below:

DOWNLOAD THE LSM303C ARDUINO LIBRARIES

For help installing the library, check out our Installing an Arduino Library
tutorial. You might find it easier to use the Arduino IDE library manager if
you are running a modern release, but feel free to use any method in the
tutorial.

The example Arduino code allows you to do things like read the
magnetometer in all 3 axis, read the accelerometer in all 3 axis, and read
the temperature of the die in Fahrenheit and Celsius.

Running the Minimalist Example

Now, you can now run the example sketches. Open File ⇒ Examples ⇒
SparkFun LSM303C 6 DOF IMU Breakout ⇒ MinimalistExample. This
sketch is a simple as possible other than a little error checking.

The setup function configures the Arduino’s serial port to 115200 baud and
configures the LSM303C to some reasonable defaults.

LSM303C myIMU;

void setup()
{
 Serial.begin(115200);
if (myIMU.begin() != IMU_SUCCESS)

 {
 Serial.println("Failed setup.");

while(1);
 }
}

The loop function sequentially prints out the x, y, and z vales measured by
the accelerometer, then the gyroscope, and then the magnetometer. This is
followed up by the temperature of the die in degrees Celsius and
Fahrenheit. All values are rounded to 4 digits past the decimal point.

void loop()
{
//Get all parameters

 Serial.print("\nAccelerometer:\n");
 Serial.print(" X = ");
 Serial.println(myIMU.readAccelX(), 4);
 Serial.print(" Y = ");
 Serial.println(myIMU.readAccelY(), 4);
 Serial.print(" Z = ");
 Serial.println(myIMU.readAccelZ(), 4);

Here is some sample output:

Page 7 of 12




 

Accelerometer:
 X = 56.7017
 Y = 42.7856
 Z = 946.2891

Gyroscope:
 X = nan
 Y = nan
 Z = nan

Magnetometer:
 X = ­0.2051
 Y = 0.0527
 Z = 0.0742

Thermometer:
 Degrees C = 24.5000
 Degrees F = 76.1000

You may have noticed that gyro data is printed despite there not being a
gyro on this board. If a value is not available, the library functions will return
nan (not a number). In this case the LSM303C doesn’t have a gyroscope,
but it still returns a value for a consistent IMU interface. Any IMU library that
implements the SparkFunIMU abstract class can be swapped out without
having to change the code that uses the library. If at some point in the
future it is determined that a project needs more or less degrees of freedom
(and is coded with error checking) the code change is trivial. Change
#include “SparkFunLSM303C.h” to
#include “SparkFun<some other sensor>.h” , and LSM303C myIMU; to
<some other sensor> myIMU . If for whatever reason the sensor doesn’t

have valid data ready for a sensor that does exist, it will also return nan.
This indicates that the value is undefined.

Running the Configure Example

By default, the easy to configure example is configured exactly the same as
the minimalist example. Here is the code that differentiates the two
examples, the setup:

void setup() {
 Serial.begin(115200);

if (myIMU.begin(
///// Interface mode options
//MODE_SPI,

 MODE_I2C,

///// Magnetometer output data rate options
//MAG_DO_0_625_Hz,
//MAG_DO_1_25_Hz,

This setup function exposes all of the configuration options necessary to
read the magnetometer and accelerometer. See the datasheet for more
advanced configuration. To change a configuration option, uncomment the
desired option in that section, and remove or comment out all other options
in that section. For example, if you wanted to use the SPI interface, you
would change that section to look like the following.

Page 8 of 12

///// Interface mode options
 MODE_SPI,

//MODE_I2C,

After uploading the sketch, open the serial monitor or your favorite terminal
emulator and you should start seeing something similar to the following
repeating over and over once per second.

Accelerometer:
 X = 64.5752
 Y = 31.4941
 Z = 943.1152

Magnetometer:
 X = ­0.2085
 Y = 0.0425
 Z = 0.0972

Thermometer:
 Degrees C = 25.3750
 Degrees F = 77.6750

In the setup that this data capture came from, the breakout board was
sitting roughly flat on a desk. This orients the z-axis parallel to the earths
gravitational field of 1,000 mg. This is seen by the z-axis value of around
943. If the LSM303C were in free fall, the z-axis component would be 0 g,
because it wouldn’t be accelerating. Since the sensor isn’t in free fall, it is
measuring an effective acceleration of 1 g in the positive z direction up out
of the table.

More Library Details

Common IMU Interface

This library does the C++ ‘equivalent’ of implementing a common interface
or template. It does this by implementing the pure virtual methods of the
SparkFunIMU class. This strays from the pure definition of an abstract
because not all of the methods are purely virtual. We’ve strayed from this to
give unimplemented methods a default behavior. In less technical terms,
we’ve provided a common set of basic functions that any IMU should have.

virtual float readGyroX() { return NAN; }
virtual float readGyroY() { return NAN; }
virtual float readGyroZ() { return NAN; }
virtual float readAccelX() { return NAN; }
virtual float readAccelY() { return NAN; }
virtual float readAccelZ() { return NAN; }
virtual float readMagX() { return NAN; }
virtual float readMagY() { return NAN; }
virtual float readMagZ() { return NAN; }
virtual float readTempC() { return NAN; }
virtual float readTempF() { return NAN; }

The LSM303C provides useful definitions for all of these methods except
for the ones that read the gyroscope, since the LSM303C doesn’t have a
gyroscope. If you were to call readGyroX() , the default definition would be
used, and it would return Not A Number (NAN). This is useful because, if

Page 9 of 12

you write your code to use these functions and later decide to use a
different IMU that also implements this interface, you only have to change a
few words, and all of the code will work with the new sensor.

LSM303C Types

This library is written a little to the computer science object-oriented,
encapsulation-type safety side, and a little less to the code size or speed
optimized side. To provide type safety and improve readability,
LSM303CTypes.h was written. In this header file, many types are defined,
all registers are defined to types with descriptive names. As are all of the
values you might want to write to the registers. Here is a simple example:

typedef enum
{
 ACC_I2C_ADDR = 0x1D,
 MAG_I2C_ADDR = 0x1E
} I2C_ADDR_t

The first keyword there, typedef , is used in C and C++ to define more
complex types out of existing types. In this case a type named I2C_ADDR_t
is defined to be an enumeration with the enum keyword. An enumeration is
a list of explicitly named integral type constants. They are guarenteed to be
a variable large enough to hold an int type, but what they really are
depends on the compiler. For avr-gcc there are compiler switches that can
change the actual value used. In this case there are two valid values for a
variable of type I2C_ADDR_t ; ACC_I2C_ADDR and MAG_I2C_ADDR.
ACC_I2C_ADDR is short for “accelerometer (Inter-Integrated Circuit (I C)
address”. Arduino will interrpret that value to be 0x1D .

Consider the following two function prototypes:

uint8_t I2C_ByteWrite(I2C_ADDR_t, uint8_t, uint8_t);
uint8_t I2C_ByteWrite(int, uint8_t, uint8_t);

Both versions of that function are capable of accepting the values 0x1D
and 0x1E . The main difference is that the first prototype is type safe. The
first parameter has to be of type I2C_ADDR_t . This type only has two valid
values, ACC_I2C_ADDR and ACC_I2C_ADDR . If you try and pass any other
value without explicitly casting it your code won’t compile. You cannot make
a mistake that can be loaded onto your Arduino. The avr-gcc toolchain that
comes with the Arduino IDE will not let you make that mistake.

The first parameter of the second function prototype can be any int ,
including the values 0x1D and 0x1E , but not limited to those valid values.
Sure your code could handle unexpected values, but what should it do
about it? Strobe out an error message in Morse code on an LED? Lock up?
This type unsafe code can allow runtime errors to get onto your
microcontroller and cause strange bugs. The configure example was
designed to show all of the common options, so referencing this header
isn’t typically needed. The extra complexity is ‘hidden’ away where you only
see it if you go looking for it.

Debug Macros

Also in the library is a header file named DebugMacros.h. As the name
suggests this files contains the definitions of 4 macro functions used for
debugging. This is a very simple tool hacked together for the use in
developing this library, but is useful none the less. They don’t follow the
GNU coding style (case), so they blend in more like standard functions in
an attempt to hide the complexity from the beginner programmer.

2

Page 10 of 12

Prototype Description

debug_print
(msg, ...)

Prints a labeled debug message to the serial
monitor.
This macro function prepends the name of function
& '::' to what Serial.print would do.
E.g. loop::Debug message

debug_prints
(msg, ...)

Very similar to the above function except it's
shorter. No function label here.
Basically the same function as Serial.print().

debug_println
(msg, ...)

Very similar to the first macro function except it
appends a newline character.

debug_printlns
(msg, ...)

Basically Serial.println(). No function label here.

These macro functions have a few advantages over the built in serial
printing functions. The first is that all you have to do is change a single
character to turn all of your debug statements on or off. They will be
completely removed from the compiled code if turned off. This is done by
defining DEBUG to be 1 (or non-zero) to enable the debug output. If DEBUG
is defined to be 0 , all of the debug_print<options> statements will be
removed from the code by the preprocessor before compilation. The place
to define the DEBUG macro is at the top of SparkFunLSM303C.cpp.

Another useful trick they can be used for is generating something similar to
a stack trace. To do this, simply add debug_print(EMPTY); to each
function. Pretend that there are a bunch of functions defined. Here is a
stripped down code example:

void loop()
{
debug_print(EMPTY); // This is kind of unnecessary
level_1_funct();

}

void level_1_funct(void)
{
debug_print(EMPTY);
level_2_funct();

}

void level_2_funct(void)
{
debug_println("Example error message");

}

Running the sketch containing this code would produce the following
output:

loop::level_1_funct::level_2_funct::Example error message

Along with the message saying what went wrong the code provides an in
order list of all of the functions that called it. This is helpful for tracing back
where the error occurred. It tells all of the recent functions involved. This
isn’t as useful as a real stack trace, but it’s worth the 20 lines of code.

Resources & Going Further
Hopefully that info dump was enough to get you rolling with the LSM303C.

Page 11 of 12

If you need any more information, here are some more resources:

• LSM303C Product GitHub Repository – Your revision-controled
source for all things LSM303C. Here you’ll find our most up-to-date
hardware layouts and code.

• LSM303C Datasheet – This datasheet covers everything from the
hardware and pinout of the IC, to the register mapping of the
accelerometer, and magnetometer.

• LSM303C Breakout Schematic
• LSM303C Breakout EAGLE Files

Going Further

Now that you’ve got the LSM303C up-and-running, what project are you
going to incorporate motion-sensing into? Need a little inspiration? Check
out some of these tutorials!

• Dungeons and Dragons Dice Gauntlet – This project uses an
accelerometer to sense a “rolling the dice” motion. You could swap in
the LSM303C to add more functionality – like compass-based
damage multipliers!

• Are You Okay? Widget – Use an Electric Imp and accelerometer to
create an “Are You OK” widget. A cozy piece of technology your
friend or loved one can nudge to let you know they’re OK from half-a-
world away.

• Leap Motion Teardown – An IMU sensor is cool, but image-based
motion sensing is the future. Check out this teardown of the
miniature-Kinect-like Leap Motion!

• Pushing Data to Data.SparkFun.com – Need an online place to store
your IMU data? Check out data.sparkfun.com! This tutorial
demonstrates how to use a handful of Arduino shields to post your
data online.

Page 12 of 12

10/22/2015https://learn.sparkfun.com/tutorials/lsm303c-6dof-hookup-guide?_ga=1.199307374.1939...

